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NASA TT F-10,359
LAWS OF TURBULENT FLOW IN SMOOTH PIPES
J. Nikuradse
ABSTRACT

The laws of turbulent flow in smooth pipes in the
widest possible range of Reynolds numbers were determined
by means of an experimental setup wherein turbulent water
flows in circular pipes could be observed up to Re 3240103,
It was shown that the velocity distribution changes with
the Re number. Measured distributions were in good agree-
ment with those reported by Bazin and Stanton. The ex-
ponent n of Prandtl's exponential law had the fixed value
of n = 1/7 in the Blasius range of drag up to Re 100-103,
At very low Re the exponent was larger. Above Re 100-103
there is a lowering of the exponent. Turbulent exchange
magnitudes were determined as a function of wall distance.
Above Re 100:103 the distribution of this magnitude over
the cross section is independent of the Re number. Meas-
ured velocity distributions and law of drag were compared
with v Karman's distributions and were found to be in good
agreement at high Re where the influence of viscosity is
absent. If X = dp 2d is the pipe coefficient of drag,

dx au
the Blasius drag formula A = 0.316 is confirmed up to Re
B Rel/4
0-103. For higher Re the drag coefficient becomes
0.0032 + 0.221. Correlations between the average
‘Re0.237
velocity @ and maximum velocity U are determined and
certain conclusions with reference to the v. Karman drag
formula and the present one are drawn.

= 10
A=

Introduction

Until now the experimental knowledge of turbulent flow, which has been the /1%
subject of numerous studies, was still not sufficient to produce a satisfactory
theory of turbulence. The older studies,which were primarily aimed at the laws
of flow resistance in pipes, could satisfy neither the theoretician nor the
practician. The results of these experiments rem:ived unzlear as long as they
were not related to the physically correct parameter, to the Reynolds number
(Re). 1In many cases no consideration was giver tc¢ che fact that the velocity

*Numbers given in the margin indicate the paginat.... in the original foreign
text. .
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distribution in the pipe developed only after a long ''starting zone'". H.

Blasius (ref. 1) succeded in arranging the experimental material on flow in

smooth pipes from the point of view of similarity. He obtained an empirical

formula that represents the law of drag fairly accurately in a range of Reyn-

0lds number to about Re = u.d = 100:-10° (4 = average velocity, d = pipe diam
v

eter, v = kinematic viscosity). For setting up his drag formula Blasius used

the experiments of Saph and Schoder, (ref. 2) who worked with water and meas-

ured the pressure loss in 15 drawn brass pipes with diameter d = 2.77 mm to

53 mm in the range of Reynolds number from Re = 1.4°103 to 104°10%: Blasius

found the formula A = 64/Re for laminar flow and A = 0.316 Re for turbulent ‘

flow (A= drag coefficient). The experiments of Saph and Schoder show that the

transition of laminar flow to turbulent flow takes place at about Re = 2000

and 3000. In addition to the experiments with water of Saph and Schoder,

Blasius used the experiments of Nusselt (ref. 3) for drawing up his law of

similitude. Nusselt studied the pressure losses for the flow of compressed air

in a pipe with diameter d = 2.201 cm. When the drag coefficient is calculated

from these experiments and plotted as a function of the Reynolds number, the

same results are obtained as those that were obtained from the experiments of

Saph and Schoder. Nusselt's values, which lie in the range of Reynolds number

6-103 to about 150-103 agree very well with the resistance formula of Blasius.

Thereby the similarity for different fluids, water and air, is confirmed.

Blasius also used the experiments of Lang, which were made in a copper pipe of

d = 6 mm up to Reynolds number Re = 326:103. The purpose of the experiments

was to make a ccmparison between high velocities with small pipe diameter on

the one hand and low velocities with large pipe diameter on the other hand.

This comparison led to a very satisfactory confirmation of the law of similitude.

After the drawing up of the law of similitude, Ombeck (ref. 4) set himself
the task of determining the dependence of the drag coefficient on the Reynolds
number from experiments with air over a large range of Reynolds numbers, and
thereby verifying the formula of Blasius. The experiments were carried out: in
circular pipes made of different materials and of different diameters (d =
2.004 cm to d = 10 cm), and extended to about Re = 450-103. From these ex-
periments Ombeck obtained a formula similar to that of Blasius, with insig-
nificant deviations. These lie, as Ombeck himself states, in the uncertainty
of the determination of the kinetic viscosity. Considering the circumstance,
he found a good agreement with the Blasius formula up to Re = 100-103.

For the purpose of verifying the law of similitude, Stanton and Pannell
(ref. 5) performed numerous experiments in circular pipes with different
diameters (d = 0.361 cm to d = 12.62 cm) with water and air at different tem-
peratures. The experiments were in the range of Reynolds numbers 2.2:103 to
430+103. The results of these experiments confirmed the law of similitude /2
in the best way: up to Reynolds number 100-1C3 the testing points were in line
with those of Blasius. Beyond that an increasing deviation upward from the
line was observed with increasing Reynolds number. Lees (ref. 6) used the
Stanton-Pannell results as the basis for drawing up his empirical formula for
the law of resistance and found A = 0.0714 + 0. 6104
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Jakob and Erk (ref. 7) carried out experiments with water on the pressure
drop in relation to throughput in drawn brass pipes of diameter d = 7 cm and
10 cm in the range of Reynolds numbers between 86-103 and 462-103, Within the
distribution of the testing points about 17 confirmed the measurements of
Stanton and Pannell. Jakob and Erk derived a drag formula from their own ex-
periments which agrees almost precisely with that of Lees.

Of more recent experiments, those of Hermann (ref. 8) on the law of re-
sistance in a still greater range of Reynolds numbers must be mentioned:
Hermann carried out the experiments with water in a copper pipe of diameter d
= 5 cm and a brass pipe of diameter d = 6.8 cm in the range of Reynolds numbers
between 20:103 and 1900-103 and starting zones between 88 and 600 pipe radii.
He studied the dependence of the drag coefficient on the Reynolds number and
for short starting zones and low Reynolds numbers he found a good agreement
with the law of drag which Stanton and Pannell and Jakob and Erk and others
previously had established. Hermann observed a starting effect (decrease of
drag coefficient with the starting zone) with a starting distance of up to B
600 pipe radii: in addition he obtained an increase in the starting zone with :
increasing Reynolds number. The experimental results show that approximately
200 r should be considered as the starting zone. Hermann derived from these
experiments a formula which is analogous to that of Lees. At the end he pre-
sents a table for conversion of the drag coefficient for any starting zone be-
tween 88 and 600 radii. L. Schiller (ref. 9), under whose direction Hermanm
worked, reported in 1929 in Aachen at the Congress for Aerodynamics and Related
Subjects about the results cited above, whereby it turned out that the draz co-
efficients above the highest Reynolds numbers reached by Stanton and Pannell
and Jakob and Erk were substantially higher than those found at GBttingen. The
higher resistance apparently showed that Hermann had a rotation in his test
pipe which caused an increase in drag. This fact induced L. Prandtl (ref. 10)
to suggest that a flow straightener be built into the pipe intake and the
measurements be repeated. The results of the check measurements, as reported
by L. Schiller in a postscript to his Aachen lecture, was that there was no
more starting effect after 250 pipe radii and that.with a sharp intake no more
starting effect was to be observed after a zone of 100 r, which agrees with the
GHttingen measurements. Here it must also be mentioned that the extensive
GYttingen measurements, not published, show about starting distance that there
is no starting effect from 100 r on with a rounded intake either.

Among the first good experiments on the velocity distribution of turbulent
flows are those of Stanton (ref. 11). The measurements were made with sir in
pipes of 500 cm length and a diameter d = 4.93 cm and d = 7.4 cm and extended
over the Reynolds numbers between 14°103 and 60°103, Data about the pressure
gradient at which the velocity distribution was recorded are missing. A fur-
ther similar measurement with water was made by the author (ref. 12) in a
circular pipe of 2.8 cm diameter at a Reynclds number of about 180.103. Fur-
thermore, measurements exist on the velocity disiribuiion in channels and pipes
of non-circular cross section, which are not related to this work.

From the works cited one will see thar the expeririental findings are not
adequate to clarify the turbulence problem. For cnis reason we had set our-
selves the task at GYttingen, to expand the existing investigations in two di-
rections: on the one hand to extend the scope of the experiments to very high

3
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Reynolds numbers and on the other hand in addition to ascertaining the law of
drag also to clarify the velocity distributions, the knowledge of which is of
great importance to the study of turbulent flow, in relation to the Reynolds
number. We have carried out a large series of experiments on the velocity dis-
tribution and pressure drop in smooth pipes with the highest attainable meas-
uring accuracy and in as large a range of Reynolds numbers as possible.

Through suitable interpretations we have succeeded in showing:

1. which laws exist in the relationship between drag and velocity
distribution.

2. by which formulas the drag law and the law for velocity distribution
can be expressed.

3. which laws apply to the exchange magnitude and the Prandtl mixing
path theory.

In these investigations full use was made of the theoretical results of
Karman's consideration of similitude (ref. 13). The experiments confirmed .
these results very well above the limit at which the influence of viscosity on
the turbulence phenomena disappears. o

The experiments (ref. 14) were carried out during 1928/29 at the Kaiser
Wilhelm Institut flr Str8mungsforschung under the direction of Prof. Dr. L.
Prandtl. The theoretical treatment of the experimental results could not be
completed until the summer of 1931. The experimental installation and appara-
tus were built in the shops of the Kaiser Wilhelm Institut flr StrBmungsforsch-
ung.

I should like to express in this place my heartfelt thanks to my highly
respected chief Prof. Dr. L. Prandtl, who supported me at all times with his
valuable counsel.

I. Experimental Part : /3

1. Apparatus

Three different experimental installations were used for the study of flow
phenomena in circular pipes; )

a) For low Reynolds numbers of about 3:103 to 60-103 a tank with overflow
was used, which tank was fed from the water supply;

b) For higher Reynolds numbers to about 1400°103 the water was circulated
by means of a rotary pump;

¢) To reach still higher Reynolds numbers to about 2500.103 the water
stored in the tank was driven out by means of compressed air;

d) With the last two installations the Reynolds number was further in-
creased by raising the temgerature of the water, whereby in the 3rd case a max~
imum value of Re = 3300:10° could be reached.

Re a): As a perfectly constant water column with small throughput quantity
such as is required at lower Reynolds numbers was difficult to obtain with a
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rotary pump alone, the following arrangement was made. The water flows through
a feed pipe z1 (Fig. 1) from the water system into the open water tank wk.

With the outlet valve ah open the water rises in the ascending pipe str as high
as the water in tank wk. As the feed pipe delivered a somewhat greater amount
of water than flowed out through the test pipe vr, the excess water was de-
livered through the ascending pipe str to the collecting vessel ft from which
it was carried off through outlet pipe fr, so that a constant water level was
obtained. In order to get a uniform flow of water in the test pipe a straight-
ener gl was built into the cylindrical part of the outlet from water tank wk.
This was to prevent the great vorticity,which was caused in the water tank by
the inflowing water, from being continued in the test pipe. Through the

- conical part of the outlet the water received an acceleration which had a fur-

ther stabilizing effect. The water was then brought through a pipe zr of 25
cm diameter and 250 cm length to the head of the test pipe. Test pipes of the
following sizes were used (Table 1). -

Table 1

Dimensions of the Test Pipes

d 1le 1 111 1, X X Desig-
mm mm mm “mm mm mm d nations
10 550 500 500 450 2,000 200 vr,

20 1,330 500 500 170 2,500 125 vr>o
30 1,960 500 500 40 3,000 100 vr3
50 3,300 1,000 1,000 70 6,000 120 vIry
100 4,000 1,500 1,000 550 7,050 70.5 Vrg

d = internal diameter of pipe; 1, = length of intake; l; = measuring
section I; 177 = measuring section II; 1, = length of outlet; x =
total length; x = relative total length.

d

In order to obtain a uniform intake into the test pipe, feed pipe zr to
the test pipe is conically narrowed in all tests, to the diameter of the test
pipe. In this reducing piece al (Fig. 4) [ i.e. 5 ] there was a sharp-edged
constriction during the tests with overflow, which should guarantee a tur-
bulent flow even with the lowest Reynolds numbers studied. A relief valve eh
was mounted at the highest point of the feed pipe immediately before the
narrowing. The test pipe with the velocity measuring apparatus was mounted on
two carriages, which permitted convenient displacement during conversion. The
carriages ran on tracks on the edge wall of the supply canal. In the longitu-
dinal direction of the carriage lay an optical track cm which the riders stood,
which carried the test pipe and made an ~J3ustmeat in the %orizontal direction
possible. At the end of the test pipe was tnec velcrit, measuring apparatus,
which will be described in detail below. Underneath, in the supply channel vk

]
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stood the measuring tank mb (Fig. 4) [i.e. 5].

Re b): For the experiments with circulation (Fig. 2) the water was taken
from the supply canal vk and conveyed to the water tank wk by the rotary pump
which was driven by a motor am (power: 14 kW, speed variable between 1120 and
1900 rpm). From the water tank it returned through the test pipe yr to the
supply canal. Coarse control was achieved through the starter an of the drive
motor and the slide valve sb that was inserted between rotary pump kp and
water tank wk. The fine adjustment took place through a throttle valve dv on
the velocity measuring apparatus (Fig. 5). The rotary pump was capable of
maintaining a pressure up to 2 atm on the water surface in water tank wk. The
pressure was generated by the water compressing the air present in the tank a-
bove the water. Generally a water column of 500 cm was maintained (dimensions
of tank wk; height 6500 mm; diameter 1500 mm). The testing arrangement just
described permitted water flows up to about Re = 1000-103 to be created at
normal temperatures. The testing section was otherwise exactly as with the
arrangement first described.

Re c): The compressed air installation consisted of a compressor capable
of creating a pressure of about 10 atm in the pressure tank dk (Fig. 1). The
pressure tank was connected through an Arca regulator a with water tank wk; the
regulator, which will be described in detail below, provided for constant pres-
sure in the discharge of water from the water tank. As the outflow time was
limited (shortest period about 45 sec) the quick-acting valve sh located be-
tween the water tank and the test pipe provided for quick opening and closing
of the experimental passage. The quick-acting valve was controlled by com-
pressed air. About 0.1 sec was required for the opening and closing. To pre-
vent a reduced pressure from occuring in the water pipe through the closing of
the quick-acting valve, the relief valve sv, which was placed at the highest
point of the feed pipe zr between the quick-acting valve and the test pipe,
provided for equalization with the ambient air. As in these tests measure-
ments were made in the free jet, the velocity measuring apparztus gm was open
and an ascending pipe sr was placed on it. The free jet was caught by the jet
destroyer st, which was mounted on a third carriage, and returned to the
supply canal through deflection and quieting vessel br. The feed pipe 2zr in
these experiments was only 1500 mm long, due to lack of space.

Re d): In order to reach still higher Reynolds numbers the kinematic
viscosity v =4-0of the water was reduced by increasing the temperature. 14
The same method was also used in part for the measurements with circulation,
because the tests by means of this installation required much less time and
effort than with the last mentioned test arrangement. The water was heated
with steam in a tank. The tank delivered about 1.1 liter/sec water at 40° C.

By reducing the amount delivered the water temperature could be increased to ca
95° C, which due to the cooling in the testing apparatus corresponded to a
temperature of about 40° C in the test pipe. The iank was next to the wall of
the hydraulic laboratory and discharged through a hose zf into the supply canal
vk, As a result of the increase in the temperature cf the water the Reynolds
numbers amounted to Re = 1400°103 with tle secoad instaiiaztion and Re = 3240-103
with the third installation. A general view of th. installation for c) and d)
is seen in Fig. 3.




2. Measuring Devices
a) Velocity measuring apparatus with throttle and swinging outlet

The velocity measuring apparatus (Fig. 4) consists of the housing m, the
cover d, the spindles sp and su, the slide schl and the movable pito tube pt.
The housing has windows £ on either side for observation purposes. There is a
wall w in the middle, which is to prevent the fluid from flowing back into the
measuring chamber. The cover d is screwed rigidly to the housing so a ready
seal is obtainable. A valve e is placed on the cover for venting.

Spindles sp and su are provided for moving the pito tube and at the same
time they support slide schl. Spindle sp has a thread of 1 mm pitch and
pushes the slide horizontally; it is turned from the outside and is sealed by a
stuffing box. The revolutions of spindle sp are transferred to a counter zw.
This is so arranged that the roll for the last digit position (unit position)
is rigidly attached to the counter shaft, so that the counter advances the
units instead of one number and consequently the second place of the numbers
is in the unit position. Thereby 0.1 mm displacement can be read conveniently.:
With the movement of the slide back and forth the pitot tube is simultaneously
moved in the same directionm. ‘

The vertical movements of the pitottube holder ph are effected by spiundle
su, which has no thread, but a groove. Through the turning of the spindle the
worm gears are turned. The worm wheel z has an internal thread with 1 mm pitch
and screws the pitottube holder ph up and down while it is secured against
turning by the guide flanks fl. The counting was done by means of counter zwjp
in the same manner as with spindle sp.

The total pressure to be measured is carried outside through the pito tube
holder ph on which pitot tubes pt of various diameters can be mounted, and .
through hose s. As the velocity distribution was measured 0.1 to 0.2 mm behind
the outlet end of the test pipe, the static pressure must also be measured in
this plane of cross section; for this reason a boring scht of about 0.8 mm diam
was made in the flange of the test pipe. This boring was ca 2 mm from the edge
of the jet. The pressure prevailing here was equal to the pressure at the edge
of the jet.

In order to be able to regulate the throughput quantities accurately a
throttle valve dv (Fig. 4) is mounted on the velocity measuring apparatus. The
position of the throttle cone dk can be adjusted by means of the screw spindle
srsp (Fig. 5) [i.e. 4] with measuring scale msk.

The swinging outlet sch serves to lead the liquid quickly to a measuring
tank for quantity measurement and again to lead it off. A ball bearing kl
permits it to be swung very rapidly.

The velocity measuring apparatus, the throttie device and the swinging out-
let are mounted together and lie on a carvriage wg (Fig. %) [i.e. 5] which is
likewise movable on the tracks previously mentioncd, in the longitudinal di-
rection of the supply tank. ’




b) Measuring Tank

A cylindrical measuring tank mb (Fig. 5) with a capacity of about 700
liters with 1000 mm diameter and 900 mm height was used for the quantity meas-
urement; it could be moved under the swinging outlet sch. A drain with stop-

i cock ab was placed in the bottom of the measuring tank. Before the drain cock
- there was installed a water-gauge glass ws with millimeter graduation for read-
' ing the water level in the tank. The measuring tank stood on four screw feet
sf to make it adjustable horizontally. A perforated round wooden disk was
floating on the water in the measuring tank, which was to damp the oscillations
of the water surface, whereby the time for reading was shortened. A smaller
similar measuring tank of 178 mm diameter and 700 mm height was used for the
measurement of smaller quantities. For more exact ascertainment of the diam-
eter of the measuring tank the height of rise of the water level was determined
as a function of the amount of water (ca 10 kg), formerly established by weigh-
ing.

¢) Micromanometer

The accuracy of reading the ordinary water manometer was not sufficient
for the small pressure differences that occurred. An instrument had to be
created whose reading accuracy met our demands but which also at the same time
could be used for high pressures. This problem was solved as follows for pres-
sures from 0.02 to about 500 mm water column. In a vertical glass tube with
three stopcocks hj, hp, h3 (Fig. 6) two glass tubes are fused in between every
two cocks. Between the two free upper legs of these tubes a T piece with 120°
angle between the legs was fused in so that one leg stood vertically upwards.
This end of the T piece could be closed by a stopcock hg. The stopcock hy in
another leg of the T piece permitted the breaking of the connection between
the two glass tubes. The free ends a3 and a, of the glass tubes could be
closed by pinchcocks. When this device is to be used as a water manometer, the
two pressure lines are closed at aj and ap and the stopcocks hy, hy and h, are
opened. With mercury filling the pressure line is closed at aj and a4 and
opened at hj. For checking the zero point during operation hj3 is opened with
the water manometer and h, with the mercury manometer. The reading zome has a
length of about 500 mm. An increase in the accuracy of measurement was achieved
through a reading microscope mi. On a solid baseplate of brass a square pre-
cision tube is rigidly mounted, on which the two slides sl are movably arranged.
Each slide carries a reading microscope with cross hairs. The moving is effec-
ted by rack and pinion. The worm drive sn (Fig. 7) which can be engaged and
disengaged makes possible a precise fine adjustment. The lower slide carries
the scale m with millimeter gradation, the upper one carries the vernier n with
division in fiftieths. A swingable magnifying glass lu is placed in front of
the vernier. The illumination is effected by the strip lamp la (Fig. 6) which /6
is movably placed. behind a pane of frosted glass mg. By means of adjustable
shields bl (Fig. 7) the zone of the meniscus under chbservation is darkened, so
it is contrasted black against the illuminated frusted glass., The manometer
can be adjusted by means of level and regulating screws to be precisely verti=
cal.




d) Arca Regulator

The Arca regulator, a present from the firm Arca-Regler AG, Berlin W3,
maintains the desired pressure in the water tank. The mode of operation is as
follows. The water pipe is connected at wl. A branch 1; leads through choke
dr which regulates the throughput. The water acts on piston k and flows
through pipe 1, to the poppet valve t, which closes with high pressure in the
water tank and opens again with low pressure. The tension spring sf permits
adjustment to a specific pressure prior to the beginning of the experiment.

The membrane bellows mb transmits the pressure by means of lever h to poppet
valve tv. If the pressure in the water tank declines the poppet valve tv also
opens. Thereby the discharge 1, is released. The water in the water pipe is
now no longer blocked, piston ko is forced upward by piston spring kf and with
it the control piston sk. The latter now clears the water passage under the
lifting piston hk. The water pressure now raises the lifting piston and there-
by the regulator valve rv lifts, by which the connection between compressed air
tank dk and water tank wk is again established. When the predetermined pres-
sure is again reached in water tank wk, this acts through the membrane bellows
and the poppet valve tv closes. Thereby the pressure on the piston ko increas-
es and presses the latter downward. Then the water flow wl under lifting pis-
ton hk is again shut off and the outlet wa is opened. The lifting spring hf
again presses the regulator valve rv shut. In that the membrane bellows mb is
not connected with the air space in the tank, but below in the water space, the
water pressure is kept constant at the outlet during the discharge independent
of the superimpcsed water column height.

e) Quick closing valve (Ref. 15)

The quick closing valve (Fig. 9) is operated by compressed air of about e
atm and can be opened or closed in about 0.1 to 0.2 sec. The process in open-
ing and closing the quick acting valve is as follows:

Turning the control wheel sr first opens a small valve ha by means of a
cam, which lets compressed air through pipe 1 in below lifting piston hk. The
latter is raised and with it the cone k as far as the stop schr, which is ad-
justable. Now the seat surfaces of cone k are free, and the latter is rotated
by the rotating piston drk. The compressed air enters the control piston sk
through the inlet lc and fills the chambers ka (see section A-A). 1If the con-
trol wheel sr and likewise the control piston sk are turned electrically or
manually, the slots at ¢ and d open, the compressed air flows through slots ¢
into chambers ku and presses the rotating piston drk and consequently also
cone k of the valve. The air that is present in chambers ko escapes through
slots d into the open. When cone k and the rotating piston drk have been _
turned 90° the small valve ha closes and lets out the air under the lifting
piston hk at the same time. The latter and the cone are again forced down by
an adjustable spring f. The closing is effected Ly the turning backward of
control wheel sr through the same arrangements in reverse order. '

To prevent cone k from oscillating .z il Jamping cdevice is provided
(section B-B). The damping piston dmk is rigidly ~.unected to the rotating pis-
ton drk. The chambers kd are filled with oil through an inlet e connected with
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wk water tank
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sby slide valve between wk and kp
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fr outlet pipe

ft collecting vessel
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h blowout valve

gl straightener

z2r feed pipe

ksv safety valve for water tank

br quieting vessel

sV relief wvalve

vr test pipe

gm velocity measuring apparatus

ST ascending pipe

a Arca regulator

kp rotary pump

am drive motor

vk supply canal

an starter for electric mo oz

zf feed hose

af drain

qws mercury water level meter

sh quick closing valve

st jet destroyer
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Fig. 4. The big velocity measurement apparatus with
throttle and swinging cutlet.

m housing

d cover

sp, su spindles

schl slide

pt pitot tube

ph pitot tube heclder
£ window

re pipe attachment for total pressure
z worm wheel

f1 guide flanks

S hose

Srsp screw spindle

dr throttle cone
msk measuring scale
kl ball bearing

dv throttle valve

w wall

e venting valve
vkl fairing for pitot tube holder
sch swinging outlec
zZw, , 209y counters

scﬁt hose sleeve
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Fig. 5. A part of the experimental installation /5

. zr feed pipe
eh relief valve
al reducing piece
vr test pipe
e venting valve for the velocity measuring appa-
ratus
f window of the velocity measuring apparatus
vk supply canal
dv throttle valve
msk - measuring scale of the throttle valve
sch rotating outlet
wg carriage
mb measuring tank
ws water gauge glass
ab drain cock
sf screw feet
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Fig. 8. The Arca regulator
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Fig. 9.

Sr....control wheel
ha....valve
K.....cone
schr..stop
drk...rotating piston
sk....control piston
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kases...chamber of control
piston

¢, d....slots

ku, ko..compressed air
chambers

l.......compressecd air

hk......lifting piston

f.......spring
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The quick closing valve

Section A4

dmk.....damper piston

kd,.....0il chamber

le......compressed air
chamber

Te.eses.pipe line

sch. ....slide valve

€.ese0s.011 intake
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the pipeline r and slide valves sch. By the rotation of the damping piston,
0il is forced through the pipe toward the back and by adjustment of slide
valve sch it is more or less throttled. In the moment when damper piston dmk
closes the supply boring e, the oil, except for leaks, is completely shut off.
A hard impact is prevented by this o0il cushion. /

7

3. Experiments

a) Quantity Measurements

The quantity measurements up to Re = 300103 were undertaken in the meas-
uring tank. As no guarantee was given that the measuring tank was precisely
cylindrical, it had to be calibrated. A weighed amount of water was put into
the tank and the water level read in the water gauge glass., The calibration
showed a uniform diameter everywhere. The cross section of the large measuring
tank was F = 7850 cm?, that of the smaller one F = 248 em?. In each measure-
ment the lower level was read before the higher level after water was poured /3
in. The reading was done with perfectly still water and with a mirror to '
avoid parallax. This manner of reading made an accuracy of from 0,1 to 0.2 mm .
possible. By means of the swinging outlet the water could be.brought to the
measuring tank in 0.1 to 0.2 sec. The duration of the inflow into the meas-
uring tank was determined with a stopwatch. The stopwatch was checked as to
accuracy and had 1/10 sec gradations. The swinging outlet could then be
swung back as quickly. The duration of the inflow was between 100 and 600 sec.
If we assume that with a measuring duration of 100 sec measurements are accu-
rate within 0.2 sec, and furthermore that the water level in the water gauge is
read accurately within 0.2 mm, then in the most favorable case the error in
quantity measurement amounted to 0.3%. With a measuring duration of 600 sec
the error was reduced to 0.05%. The greatest error produces and error of 0.13%
for the average velocity u. The amount was determined as the average of sev-
eral observations (4 to 6) and occasionally from two observations.

b) Temperature Measurements

The temperature was generally measured with a thermometer at the outlet.
In order to be sure that the water in the pipe had the same temperature as it
had at the outlet, the water flowing out through the relief valve (Fig. 4) [i.e.
5] was measured. The thermometer had been calibrated and had 1/10 degree grad-
uations. Thus about 1/20 to 1/30° could be estimated, whereby an error in the
kinematic viscosity was limited to 0.05 to 0.08%. At the higher temperatures
the error in the kinematic viscosity is still smaller. The measurements were
undertaken at temperatures from 9° to 38° C. At ordinary water temperature the
constancy of temperature is easy to achieve: at higher temperatures on the
other hand there was some difficulty. As mentioned, the higher temperatures
were obtained by water of 80 to 90° C flowing irom 2 tank into the supply canal
vk, (500 to 800 cc/sec). Through preliminary tests it was found what amount
and temperature of this water was required in order to maintain a certain tem-
perature of the test water continuously. Cooled vat«r cerresponding to the in-
flow was discharged through the drain af ‘Fie ) from clLe deepest part of
supply canal vk.
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¢) Determination of Pipe Radius

If the pressure gradient dp is related to the dynamic pressure of the av-
i dx
i

erage velocity q =?75 there will be obtained the dimensionless number A which
is designated the drag coefficient. :

where® is the density of the water
Q is the throughput per unit of time
r is the pipe radius

This formula gives the result that the drag coefficient ) which was to be
determined from our experiments is proportionate to the fifth power of the pipe
radius. Therefore as accurate a determination of this as possible was required.-
The pipe radius was determined from the weight of the water which filled the
test pipe completely, and the length of the pipe. The weight determination was
done with an accuracy of * 0.01%. The length could be measured accurately to
0.2 mm, which corresponds to an error of *0.,007%Z. 1If the calculation is made
with the error of weight and pipe length in the most unfavorable case, the pipe
radius r will be about 0.001% in error. This error is of no consequence for
the determination of drag coefficient A.

d) Measurements of Static Pressure

The measurement of the static pressure is made under the assumption that
the static pressure is the same over the entire measuring cross section. Since
the static pressure can be measured quite accurately through cleanly made wall
borings, if the wall is parallel to the flow direction, the measurements of the
pressure gradient were made in that way. In each measuring cross section four
borings were made in the test pipe, which borings were connected by an annular
equalizing chamber ak (Fig. 10). The connection with the manometer could be
established by means of a nozzle tu and hose. The free leg of the manometer
was connected in the same way with the next measuring cross section.

ak....equalizing chamber
tu....nozzle

Fig. 10. Measuring cross section ior the deiermination of the static
pressure.
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The pressure gradient was measured in this way over a measuring distance 1.
Very often a suction or pressure effect occurred through imperfect borings (the
elevation produced a suction effect and the indentations a pressure effect).

In order to obtain a faultless reading of the pressure gradient the most favor-
able form of the boring was sought and the sharp-edged form was identified as
being the one. In order to determine the effect of size, borings of 0.5 mm
diameter were first made and these were gradually enlarged to 1.2 mm diameter.
It was found that at least within the range that was studied, the size of the
boring is without influence on the pressure indication. )

In preparing the sharp-~edged borings a precisely fitting brass pin was
pushed into the pipe at the site of the boring. Thereby, the formation of
large burrs and denting were prevented. By polishing with fine emery paper
on a wooden pin all the burr was easily removed. To check a boring site was
cut open and examined with a microscope under 50 x magnification. No burr
could be found.

The borings were examined individually for quality prior to the attachment
of the equalizing chamber. Every two borings were connected through a micro-
manometer. The testing was now made with the greatest throughput obtainable in
order to magnify possible errors as much as possible. In case such occurred
the pipe was polished again.

Furthermore, the pressure differences were measured over two measuring
distances 1y and 1j. The pressure gradient indications were only regarded as
correct when with the same length of the two measuring distances identical
pressure differences were determined. To compensate for an error in pressure
difference the pipe was reversed in relation to the direction of flow. Then
with the same Reynolds number the same pressure difference must be indicated.

To achieve greater accuracy in the pressure gradient necessary for the
evaluation, even longer measuring distances were used, as shown in Table 1. /9
The length of the measuring distances was determined with an accuracy to 0.2 mm.
The pressure differences were measured to 50 cm water column, respectively mer-
cury column, with a micromanometer of the described type. Greater pressure
differences were ascertained with an ordinary mercury U-manometer of 250 cm
height.

e) Velocity Measurements

The measurements of velocity were carried out so that the dynamic pressure -

of the pitot tube was connected with reference to the static pressure of the
pressure boring that lay in the measuring cross section and 2 mm from the edge
of the flow, so that the manometer indicated the dynamic pressure directly.
The velocity was calculated with the formula

=48l el (0

wherein h is the measured dynamic pressure heighit in cm water column and u is
the velocity in cm/sec.

This formula is derived from Bernouilli's equation which is obtained from
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Euler's equation of motion for frictionless fluids subject only to gravity
through integration along a streamline. The Bernouilli equation then takes the
following form:

P i = const, )
¢ e .

where H is the height of the point under consideration above a horizontal
level chosen at random.

When the Bernouilli equation is multiplied by density we obtain the fol-
lowing pressure equation: ]

2 «
pe S oli=rn 2

If outside forces (gravity) are disregarded (because H in our case has
the same value at both test openings) the pressure equation is:

2
P+01_;‘ =Ipq. 4

Po is the value of the highest pressure that appears at the mouth of the pitot
tube. It corresponds to velocity zero and is called total pressure; p is the
static pressure. If py - p = hy (with y = density and h = height of the mano-
meter column) from equation (4) we obtain:

0 —'-;—2 =hy 5) .
or with .
=7
. T
" o== Vm = 443 V/: em/s.

0

The velocity distribution was measured with a pitot tube 0.1 to 0.2 mm
behind the discharge cross section of the test pipe. The reliability of the
measurement at this distance behind the discharge cross section is shown by
comparison with the velocity distributions that were measured 2 and 5 mm before
the discharge cross section (Fig. 11). A further measurement of the velocities
at different Reynolds numbers in the pipe axis at the discharge and at the same
timé 20 d before the discharge gave identical values., The measurements were
therefore undertaken behind the discharge cross section in order to avoid pres-
sure field disturbances, but above all also because in this way it is possible
to measure the velocities right up to the wall of the pipe.

As knowledge of the static pressure in the measuring cross section was
very important for measuring the velocity distribution, this comparative meas-
urement was carried out with a probe that was installed instead of the pitot
tube. In order to eliminate as far as possible the influence of the pitot tube
holder on the static pressure a fairing vkl (Fig. 5) [i.e. 4] with symmetrical
profile was placed so that the probe lay in. tnz axis of symmetry of the profile.
The side borings of the probe lay in the measuring cross section. The probe
was connected through a micromanometer with a boring in the wall which likewise
lay in the measuring cross section. As no pressurc difference could be de-
tected by the manometer, it can be concluded thzt the ststic pressure outside
the jet was of equal magnitude also. Tt is the-efcre justified to measure the
static pressure in velocity measurements through borings in the flange. 1In
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addition a value x (in which x is the pipe length and d the pipe diameter) was
d

sought by velocity measurements, at which x value the velocity distribution is

. d

1 independent of pipe length. For this purpose the velocity distributions at Rey-

. : nolds number Re = 900-:10 and with x = 100, 65 and 40 were recorded: this was

. d

/ done- by cutting off the pipe at these lengths. At all these values the velo-

city distributions were independent of the pipe length. As in the main tests

the starting distance was x = 50 further investigations could be omitted. This

: d
result is reproduced in a dimensionless graph in Fig. 12,
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Fig. 11. Velocity distributions Fig. 12. Velocity distributions
& with x = 0 mm, x = -2 mm with x = 100 d, x = 65 d
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and x = -5 mm. and x = 40 d.

For the measurements of the velocity distribution pitot tubes were used,

of 0.21 mm and 0.30 mm internal diameter and 30 mm length, which for hydrody-

namic reasons was conical. The position of the pitot tube at the edge of the

test pipe is shown in Fig. 13. 1In this position the indication of the pitot
tube does not correspond to the dynamic pressure prevailing there. This is ex-
plained by the fact that only a part of the pitot tube opening lies in the water
jet and the rest is outside it, so that the water that flowed in flows out again

- to the side. But because exact knowledge of the dynamic pressure also in the

2 vicinity of the wall is important, a method was usad that makes the correction

f of the velocity measurement in this area possihle. For this purpose the velo-

E city distribution was measured with three pitot tuhes ot different internal
diameter, namely 0.3, 0.582 and 1.045 mm at the same Reynolds number. These
measurements served to determine by extrapolation thc velocity distribution
that would have been measured with the pitot tube of dir.uzter zero. In
Fig. 13 the distance from the wall is plotted as oh-cissa and the velocity as
ordinate. If a straight line is laid through points of equal velocity (parallel
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Fig. 13. Reduction of pitot tube opening to zero.

to the abscissa axis) and in the individual points the pertinent internal di-
ameters of the pitot tubes are plotted as vertical distances, a curve can be
laid through the terminal points of these distances, which through extrapo-
lation produces a point of intersection with the straight line. This is a
point of a new curve which would have been obtained with pitot tube of inteirnal
diameter zero. If the pitot tube opening lies entirely in the water jet, a
correction is superfluous, as Fig. 13 shows. ‘

For these positions the measured velocity curve coincides with the theo-
retical curve in point A; (i = 1, 2, 3). The distance of point Aj from the
wall is therefore equal to the internal radius r; (i = 1, 2, 3) of the opening
in the pitot tube used for measuring. In order to determine the correction for
any desired pitot tube opening a perpendicular to the abacissa axis (broken line
in figure) is drawn through such a point A; and the distances Y' and Y" of this
straight line are determined from two points on the theoretical and the measured
curves that correspond to the same velocity.

In this way value couples are ascertained for various Reynolds numbers,
which are reproduced in a dimensionless grapn in Fig. i4. If we have measured
a velocity distribution and want to convert this near the wall to the velocity
distribution that would be obtained with the pitot tube opening zero, then this
graph is used in the manner that the velncities that lie in the distance y" are
displaced to the corresponding distance y'.
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In order to determine the percentage error of the throughput that is
obtained by integration of the uncorrected velocity distribution, the measured
velocities that were obtained by measurement with various pitot tube openings
were plotted in Fig. 15 as a function of the square of the distance from the
pipe axis, and the throughput was calculated by graphic integration. The cor-
rected velocity distribution is represented by curve 1 in this figure. Curves
2, 3, and 4 correspond to the velocity distribution determined with pitot tubes
having openings d = 0.3 mm, 0.582 mm and 1.054 mm. /11

The numerical resume in Fig. 15 shows that the tbroughput of the corrected

= 1°ct¢
-

velocity distribution amounts to Q, :

cc/scoc. In 2Jdition it is observed

that with increasing pitot tube opening the tlirou.bpui that has been determined
graphically increases in contrast to measured throughput (which agrees with the
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graphically determined throughput of the corrected curve). The velocity dis~
tributions represented in Fig. 15 were measured in a pipe with diameter d = 2
cm. Similar tests were made in pipes with diameter d = 3 cm, d = 5 cm and d =
10 cm and the results represented in Fig. 16. Here the dimensionless pitot
tube opening d; which is formed by dividing the diameter of the pitot tube tip

T
by the tube diameter, is plotted as abscissa and the percentage error of the
throughput 100 {0l - Qo )s plotted as ordinate. This diagram makes it possible

Qo - :
to state the occurring errors by a certain relationship dj.

T R
4. Execution of the Experiments

Carrying out the experiments with overflow was very simple, because the
constancy of the throughput had been taken care of. If measurements of the,
velocity distribution were to be made, the throttle cone dk (Fig. 5) [i.e. 4]
of the velocity measuring apparatus was set at a certain position correspond-

ing to the desired throughput (the dependence of the throughput on the position

of the throttle in the velocity measuring apparatus was known through prelim-
inary experiments). Then so much water was let into the water tank through the
feed pipe that only very little water flowed out through the overflow. When
micromanometer I, which served for the pressure drop measurements, and micro-
manometer II, which served for the velocity measurements, had been checked as
to the correctnz2ss of their indications, the pipe axis was determined by
velocity measuraments, which axis served as reference point for the actual
measurements., Then the measurements were started, consisting in taking up
measurements of pressure drop, temperature and throughput in addition to veloc-
ity measurements.

The experiments with water circulation were more difficult insofar as
current fluctuations in the power network caused changes in the rpm of the drive
motor and thereby changes in the throughput in the test pipe. It was therefore
necessary to keep the pressure drop on a uniform level through precise adjust-
ment of the throttle cone dk. '

The execution of the measurements in the shock tests were made as follows:
first the connection between water tank wk (Fig. 1) and compressed air tank dk
was interrupted and the compressed air present in the water tank from the pre-
ceding experiment was permitted to escape through safety valve ksv of the water
tank. While the air in the compressed air tank dk was brought to about 10 atm
by means of a compressor for all experiments, the connection between rotary
pump kp and water tank wk was established and the latter filled to a certain
level with water. In the meantime the discharge cross section of the test pipe
was sealed with oiled paper, which was between the flange of the test pipe and
a ring flange fitting the pipe cross section, and now the feed pipe zr and the
test pipe vr were filled with water by means of a diversion at the quick
closing valve sh. The air that was present in the feed pipe could escape
through the opened relief valve sv. Now the ccnuertion between the compressed
air tank dk and the water tank wk was reestablirhed thronr:h Arca regulator,
which had been set in advance for a certain gvecssvre. With that the prepara-
tions were compieted and the actual experiment could begin. On a signal from
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the manometer observer the quick closing valve sh was opened; the oiled paper
was ruptured by the water pressure. After a state of equilibrium of the flow
had set in, the observer would establish the limit of the manometer deflection
by means of a runner which was easily movable on the leg of the manometer (Fig.
3). The quick closing valve remained open until the water level in the water
tank had dropped to about 40-50 cm above the discharge cross section. Then the
manometer was read. Now the preparation for the next experiment could be
started. '

II. Evaluation of the experiment
1. Velocity distribution

Velocity distributions were measured in pipes with d = lcm, 2 cm, 3 cm,
5 c¢m and 10 cm diameter at low Reynolds number Re = 4:103, to the highest Rey~-
nolds number investigated, namely Re = 3240:103. As will be seen from further
evaluations of the velocity distribution, exact knowledge of it is important
not only in the vicinity of the wall where a sharp drop in velocity exists, but
also in the vicinity of the center of the pipe where there is a slight drop in
velocity. On this account the measuring points near the wall and near the pipe
center were especially close together (the velocity distribution over the pipe
radius in general contains 18 measurement points). The velocity distribution
was symmetrical and showed no difference, or only slight differences, for o
specific distance from each side of the pipe axis. About 150 velocity pro-
files were measured, of which however only 16 were used for the complete eval-
uations. Because of the perfect symmetry of the velocity profile, only hsglf
of the profile was used for the evaluation. The numerical values of these 16
velocity distributions over the pipe radius are summarized in Table 2. In or-
der to determine velocity distributions at the lowest possible Reynolds numbers,
the intake of the 10 mm diameter pipe was centrally covered with a plate having
a 6 mm diameter opening. The plate caused strong turbulence in the inteke, /12
so that at the Reynolds number Re = 4°103 the turbulent flow was fully estab-
lished. Measurements with this arrangement were made for only the three lowest
Reynolds numbers. '

In order to follow the change of form of the velocity distribution as a
function of the Reynolds number, velocity distributions were made dimensionless,
in that the velocity distributions in question were referred to maximum ve-
locities and corresponding wall distances on the pipe radius. Thus there was
obtained equation

“ _ (¥ 5
7=r(7): ”
which is represented in Fig. 17 for six profiles, at Reynolds numbers Re = 4°+103
to 3240°103, This representation shows very ~learly that with increasing Rey-

nolds number the configuration of the velocity distribution is more and more /13

full. This fact leads to the assumption that at infinitely high Reynolds uum-

ber the layer affected by friction becomes infinitesimally small. In Fig. 18

the velocity distributions are shown in such a way tliat 1 is ordinate, log (E%)
u v

is abscissa and y/r is parameter of the dimensionless wall distance. The
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1 velocities u referring to a specific wall distance y/r are interconnected by a
U
: curve on which the pertinent y/r value is written. This diagram shows that
' for the velocities in the vicinity of the wall there is a notable scatter. If
it is desired to have a dimensionless velocity within the measured range, then
above the corresponding Raynolds number on the curve the value for u as a

U
function of y/r is read off and the desired velocity distribution is obtained.
To test, to what extent our velocity distributions correspond with those mea-
sured by other investigators, the following comparison was made.
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Fig. 17. u as a function of y/r. /13
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The most reliable measurement of velocity distribution in a circular pipe
made so far was by T. E. Stanton (ref. 16) hecruse fir<c¢ he undertook the meas-
urements with a very fine 0.33 mm diameter pitot tube and secondly because he
had a starting zone of adequate length x = 72 d (x = pipe length, d = pipe di-
ameter = 7.4 cm), so that the measurements were in the range in which
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distribution of velocity is no longer altered. A comparison of our measure-—
ments with those of Stanten seemed so much the more necessary, because Stanton
measured the velocity distributions in the experimental pipe just ahead of the
outlet end (2 to 3 d) while our average measurement was 0.1 to 0.2 mm behind
the outlet end. For this reason the velocity distributions which refer approx-
imately to the same Reynolds numbers were applied in such a way that the re-
lationship of local velocities u to maximum velocity U were taken as a function
of the dimensionless wall distance y/r (y = distance from the wall, r = pipe
radius). The Stanton measurements were made at Reynolds numbers 37.6°+103,
56.10% and 89.3°103. Our measurements at approximately the same Reynolds num-~
bers were in good agreement with Stanton's velocity distribution. Fig. 19
shows the comparison of Stanton's velocity distribution (Re = 56-103) with ours
Re = 59'103). In addition there is also to be noted that data concerning aver-
age velocity u and kinematic viscosity v are lacking in Stanton's figures. On
this account we have determined the average velocity u = 1235 cm/2 from the
throughput quantity which is determined by integration of the velocity dis-
tribution. Since Stanton's measurements were made with air, in which the vari-.
ation in kinematic viscosity with temperature is very slight, we have assumed
he kinematic viscosity at an average laboratory temperature of 18° C.

For very high Reynolds numbers it appeared advisable to us to make a com-
parison with the velocity distributions of Bazin. (ref. 17). The starting zone

Fig. 18,

as a function of log{u.d
v

ale

amounted to about x = 75 d (d = 80 cm). Data on temperature and average veloc-/14
ity are absent from Bazin's figures also. For this reascr we determined the
average velocity u = 164.9 cm/sec by integration of the velocity distributionm.
Bazin's measurements were done with water in the outside air, with temperature
deviations of 10° to 20°. In this temperature range the kinematic viscosity is
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Fig. 19. Comparison of velocity
distributions of Stanton,

Bazin and Nikuradse.
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very pronouncedly dependent upon the
temperature, and on the other hand the
change of velocity distribution with
the Reynolds number at such high Re

as those involved here is very slight.
For these reasons we set the kinematic
viscosity at 15° C (v = 0.0113 cm /sec).

The comparison of the wvelocity
distribution of Bazin with curs is also
shown in Fig. 19. Aside from the last
points measured by Bazin, in the vicin-
ity of the wall, there is good agree-
ment of velocity distributions at
approximately the same Reynolds numbers.

Expotential Law

Prandtl (ref. 18) determined from
the Blasius law of resistance that
velocity u of a turbulent flow in the
vicinity of the wall changes by the
exponent 1/7 the distance from the wall
l.€. 7)

ub =a y‘l",

wherein a is a constant for one and the same velocity profile. The calculeation

can be developed as follows.

dp

In the equation for the drag coefficient:

__dp 2d

garcrT o,

instead of pressure drop dx there is introduced the shear stress at the wall
To- The condition of equilibrium for a fluid cylinder with radius r and length

dx yields

dp _ 2%’
dz r
and therefore = 27, 24
A=
-1, A a2
From this it follows that 7%==—§~.
us value
23=0,316 Re~"*
ii - -
To 2 [ 2:
o go. (L2
or ¢ v
To =no il ="y

9

8a)

. If for drag coefficient X the Blasi-
is introduced, we obtain

(10)

(109)

The solution of this equation for u produces

@)(
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According to the Prandtl hyvpothesis, neither the pipe radius nor the velocity
in the middle is in immediate relationship to the wall friction, but both are
determined primarily by the velocity distribution in the vicinity of the wall.

u
If the ratio U of the average velocity at the maximum is assumed as con-
stant, then from equation (11) also

g e \Vs
T\ ()" (a2
u = number (g) (v)

This can be rewritten in as required if y is substituted for r and correspond-
ingly the velocity u associated with y is substituted for U

= T\ {u \' )
oomner (SR .
’ ' - “To- = :
Since the velocity distribution is measured at a fixed value of 7 and. Aarys
there is obtained from equation (13) ' ~-.
or %= const y'/’
u=ay", ahH

As is readily verified, in the velocity distribution as in (13), equation (11)
is also satisfied, i.e. the Blasius law. This law of resistance

0,316

lnz-‘——;

~ B

according to which therefore the drag coefficient is inversely proportional to
the 4th root of the Reynolds number, is valid up to Re = 100:103. Since in the
development of the 1/7 exponential law, the Blasius law was made the basis, it
is not to be anticipated that this exponential law will also be valid for
higher Reynolds numbers. In the range of validity of the Blasius law of resis-
tance the gradient of the logarithmic Acurve = . For higher Reynolds numbers
this gradient is less steep and in the range investigated by us it is almost
1/6. 1If for example X is made proportional to Re” , the calculation method as
above yields U = ay 1/9. This signifies that the exponent n = 1/7 diminishes
to 1/8, 1/9 etc. at increasingly high Reynolds numbers. At Re = 3240°103 the
exponent is approximately n = 1/10. The change of the exponents with increas--
ing Reynolds number is constantly diminishing. Naturally such a law of ex-
ponentials with changeable exponents is to be regarded only as a formula of
approximation. In the Blasius range also it appears that the 1/7 law is only
an approximation as calculations show. If the exponential law is written in
the form 5

w=ayn (15)
and the log of the measured velocity is dependent upon the log of the wall
distance, the n values are obtained from the gradicnr of the curve. In Fig. 20
the exponent 1l/n of the velocity as a fur~tion of wall di-tance is plotted for
various Reynolds numbers. It is to be ohservcd th~*+ iu the range of the lowest
Reynolds numbers the exponent has the value 1/n = 6 at about Re = 4+10%3. From
about Re = 10-103 to 100+103 where the Blasius formula is valid, we have /15
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3
1/n = 7 and at Re 3240:10" the exponent increases to 1/n = 10.
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If the assumption is made that between the sheer stress T, at the wall,
distance from the wall y and velocity u an unequlvocal relationship exists,
then in equation (9) we obtain

To ¢ (?t -,z/), (16)

g X0 v

u-y . ‘
The magnitude v is a kind of Reynolds number which is related to the wall
distance y.. If the velocity distribution is expressed in the form of the
Prandtl law of exponentials, we obtain

oy ey

- ou? (v) _ B ‘(17)

where T is a dimensionless number that can be determined from the measured

velocity distribution in connection with the related wall shear stress. Then
=2n . If we take the .log of equation (17)

1 +n “
Yo o - -
If the magnitude log (0“9 is determined from the measured velocity dis-
tribution and plotted as a function of log ‘(ﬁg) , then the dimensionless
v TN
constant £ can be read from the ordinate at log 0- (ﬁﬁ)’ , so long as

the obtained points are connected by a straight line.

The constant m which occurs as exponent of the dimensionless wall distance
(equation 15) and corresponds to the exponent in the Blasius resistance law
can be determined from our experiments. By solution of equation (18) for m
we obtain '

(1

the constant [ obtained in the experiments and exponent m are plotted in Fig.
21 as a function of log (ﬁd)', . In Fig. 22 m is plotted as a function of
A5

exponent n.
3. Universal velocity distribution

In a new statement of his ides, Prandtl lays down no exponential law at
all, but assumes only that the velocity in the vicinity of the wall is depend-
ent only upon the physical magnitudes that are valid near the wall (TO = shear
stress at the wall, § = viscosity constaut and § = demsity) while it 'is inde-
pendent of the distance of the opposite wall and of the average or maximum
velocity. We now establish a magnitude characterizing friction according to
Prandtl (ref. 19) from the shear stress tp at the wall and demsity : this
friction state characterizing magnitude has the dimension of the velocity

a}==1/%- . With this magnitude th. "dimensicriess velocity " can be
established, in that the velocity u is divided by vx:@=v  ./l6
Vi




Similarly from the distance y from the wall, velocity v, and kinematic (vis-
cosity v = Yin the manner of the Reynolds number we establish a 'dimension-

R
less wall distance" n = Vxv. Thus in the vicinity of the wall we obtain a
v
universal velocity distribution =?’(n) (ref. 20). This dependency is illus-
trated in Table 3, (Fig. 23). .
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Fig. 23. Universal Velocity Distribution ( = [n])

In this figure dimensionless velocities are presented for a series of Rey-

nolds numbers from the lowest 4-103 to the highest 3240-103. Because of the

large abscissa range g = vay three different scales are used. The points
v

drawn in are measurement data.

The universal velocity distribution is still more clearly evident if in-
stead of p the magnitude logn is used as abscissa, as in Fig. 24. It is clear
there that the experimental points lie within certain limits of scatter on a
straight line. With closer scrutiny, we see that experimental points belonging
to a specific Reynolds number do not lie exactly o a straight line but rather
that they present a systematic trend upward from below. It should be noted in
this connection that the experimental points extend to the middle of the pipe
while according to the Prandtl hypotehsis ~nlv the points adjacent to the wall
should lie on a continuous curve. This latter condition is met rather well.
For log n < 1.0 there is a determinable systematic deviation from the straight
line. From Fig. 24 if we specially consider the points near the pipe axis, we
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Table 3 /16

7 P 7 P n ¢ n P 7 ® ' P 7 ¢ e

Je=4-109 | Re—61.109| Re=9,2-107 |Re==167-10%| Re = 23,3107 Re == 43,4 - 107 | Re —105-107 | Re =203 107

10 0,16 11 0.75 13 | 10560 17 | 12,28 20 | 12,20 30 1 13,6 57 | 14,70 98 . 16,131
13 | 10,41 15 | 11,08 19 | 11,85 27 | 1345 33 | 13,86 52 | 15,1 107 | 1642 188 17,00
17 | 11,60 21 | 12,35 27 | 13,15 41 | 1450 52 | 15,00 86 | 16,35 182 | 17,60 321 19,25
21 | 1230 27 | 13,08 36 1 1392 56 | 15.20 72 1 15,79 120 | 17,10 257 1 18,70 460 20,21
28 | 13,13 37 | 14,00 50 | 14,95 80 | 16,11 105 | 16,75 176 | 18,00 3831 19,70 687 210
33 | 13,80 47 | 14,65 65 | 1560 | 105 | 1679 | 137 | 1740 233 | 18,70 507 1 20,50 013 22022
50 | 14,58 68 | 15,65 93 | 1665 | 154 | 17,80 | 202 ! 1860 | 346 | 1983 759 | 21,80 | 1367 2340
64 | 1558 87 | 1640} 122 | 17,321 203 | 18,56 1 267 | 1941 4591 20,72 | 1007 | 22,75 | 1817, 2424
78 | 1615 108 | 17,00 | 151 | 1790 | 252 | 19,18 | 332 | 20,10 572 | 21,32 | 1238} 23,40 { 2267 . 2068
092 | 1661 128 | 17471 180 | 1835 | 301 | 1968 | 3897 ; 20,60 6385 21,90 | 1511} 2405 | 2727 2500

106 | 17,001 148 | 17,88 | 208 | 1870 { 349 | UN09 | 462 ; 21,10 | 798 22,30 | 1761 | 24,50 | 3177 26,00

120 | 17,38 | 168 | 1821 | 237 | 19,12 399 | 2040 | 527 ; 2140 911 | 2262 | 2007 | 2480 | 3627, 26,10

134 | 17,62 188 | 18,49 | 266 | 1945 447 | 20,70 ; 592 2170 | 1024 | 22,95 | 2267 | 25,15 | 4082 | 2661 o

143 | 17,77 201 | 1856 | 283 | 19,60 | 477 | 20,82 | 631 I 2180 | 1092 | 23,00 | 2412 2530 | 4357 2680

146 | 17,79 205 | 18,66 | 289 | 1983 | 487 | 20,85 643 i 21,811 1116 | 23,03 | 2467} 25,33 4447i 26,85

149 | 17,801 209 | 18,70 | 294 | 19656 | 497 | 21,00 657 l 21,83 | 1137 23,10 | 2511 | 25,36 ,4537£ 26,90

§7=.g = dimensionless velocity; u = actual velocity; vi = l/ig shear
Vi ¢
stress velocity; n = vxy = dimensionless wall distance; y = distance from-the
v
wall; € = density; Re = Reynolds number, T, = sheer stress.
. A ' !
7 P n ¢ 7 P 7 | n P n (Yo ¢ m e
t

| .
Re=396-10% | Re="725.10" | Re=1110-10% | Re = 1536-103 | Re == 1959107 | Re:=2350.10% | Re==2790-10° |Re==3240 . 10"

171 | 17,98 299 | 19,08 427 1791 5801 20,20 700 21,72 830( 21,92 967{ 2240 | 1110° 2275
335 | 19,65 5731 20,92 847 1945 | 1140] 22,10 | 1410] 2327 | 1670| 23,50 | 1934 2360 | 2220! 2440
581 | 20.80 997! 2232 | 1477} 21,70 | 1980' 23,70 | 2460] 24,45 | 29201 24,90 | 3380( 2540 | 3880 2380
827 | 21,70 | 1426 23,16 | 2107 24,00 | 2830 24,80 | 3520 2535 | 4160! 26,00 | 4835 2638 | 5330 2652
1237 | 2270 | 2129| 24,30 | 3160| 25,20 | 4250} 25,85 | 5270} 2645} 6230| 27,00 | 7230 27,70 | 8330 28500
1647 | 23,45 | 2842} 25,06 | 4210| 26,00 | 5660 26,70 | 7040] 27,22 | 8340| 27,80 | 9670| 28,50 |11 100. 242
2467 | 24,76 | 4257} 26,23 | 6310 27,20 | 8500, 27,95 [10540| 28,42 [12510! 29,00 |14 500| 29,65 |166350. 00
3287 | 25,60 | 5667 27,10 | 8410| 28,05 |11300; 28,80 {14080} 29,28 {16 680| 29,90 |19340| 80,50 22200 0.0
4107 | 26,22 | 7087 2792 [10510| 28,75 |14 150| 29,50 {17580 30,00 {20850 30,60 [24200| 31,20 |27 740 3150
4927 | 26,82 | 8507 28,35 {12600 29,35 |17000] 30,07 |21120| 30,60 [25020| 31,20 |29000| 31,74 |33300 3217
5752 | 27,40 | 9907 | 28,53 | 14700 29,80 |19 800! 30,50 |24 620! 31,10 |29 190! 31,60 | 33800, 32,10 |38800: 32,58
6567 | 27,70 | 11327} 29,17 |16800 30,20 (20 600! 30,84 |28 160 I 31,40 1333601 32,00 |38680! 3240 44400 3250
727 | 28,00 | 12757 29,46 {18910} 3040 {25 SOOI 31,10 1316204 31,60 {37530 32.20 {43500} 32,70 {50000 34,10
7877 | 28,05 | 13610 | 29,58 [20210| 30,53 |27 200" 31,18 |33,7501 31,79 |40 000| 82,28 |46420] 32,80 [53300 33,21
8057 | 28,15 | 13910} 29,59 |20610( 30,57 {27800, 31,20 | 34,450 31,50 140990| 32,30 | 47400 32,86 |54400 ;33,24 <
8217 | 28,20 | 14200 29,60 (21 000| 30.60 |28 300} 31,21 135200 31,82 |41 7(.’\J 32,31 148400 32,90 {55500 3330

-]
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obtain graphically the straight line (1) with equation o o

- : ¢==5545151g7. @Q
Here we have calculated the n values for a series of ¢ values and drawn the
curve passing through the experimental points as in Fig. 23.

For further approximations it is advantageous however to lend preference
to the points near the wall. The straight line (2) laid through these points
is represented by the equation

p=584+5521g 7 T @)

In laminar flow, if velocity u is dependent only upoﬁ y, we have for
shear stress the equation

0= ,‘(@.)
: (Rl dyly

dn
where (JZL' is the value of du near the wall and u is the viscosity /18
constant or dy
duTodY
u

After integration of this equation we obtain

Y
u=—9'—{-
° i

If we introduce ¢ =—gr? and =0, we can immediately
write

;"‘ - T':;-.‘!/

vy Y
or ‘

¢ =7.

According to an estimate this equation as a consequence of the introduction of
the turbulent mixing process amounts to about f§ = 10. This laminar range is
shown in Fig. 21 and is drawn ip dashed lines in the lower curve. If equation

(13) is divided by vi = %, and u is divided by @ and if n is substituted
for vixy and the number factor ° Vi calculated, we obtain
v ¢ =284 r]lh ._ ) (13a)"

The curve corresponding to this equation is shown in Fig. 24 in dashed lines.
It is to be observed that the validity is limited to the range of log n = 1.6
to 2.6.

Using this straight line law, it is possible to calculate the velocity dis-
tribution with very good approximation for any Reynoids number, if the physical
magnitudes n,vf=1i and pipe radius r are established. From the equation
of the obtained Stﬂaight lines, the appropriate P for different distances from
the wall can be calculated and by multiplication by ihe v=locity v4 the veloc-
ity u can be determined, u =@vy. Frcm the dirensiconless distance Nthe re-
lated distances from the wall y = nv can be deterumined. We thus obtain the

‘ vk

velocity distribution u = f(y) for a specific Reynolds number.
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It naturally appears somewhat risky to calculate velocity in the middle of
the pipe but the rule specifically intended for velocities in the vicinity of
the wall. However, the differences in the central part of the pipe are not
greater per se, and on the other hand, the results of Fig. 24 favor this
method. Naturally the value in the middle is itself nonetheless inexact. The
actual velocity distributions- here present a perpendicular tangent, while the
formula used here on the contrary has a finite though slight inclination. For
the throughput volume this device is of very slight importance, however.

4. MIXING LENGTH AND EXCHANGE MAGNITUDE \

In laminar flow, if the velocity u depends only upon y, for the shearing

stress we have the equation dn
l"———-[la—’/‘, (21)

where p indicates the viscosity constant. Also, according to Boussinesq (ref.
21) in turbulent flow for the "apparent' shearing stress developed by the tur-
bulent impulse exchange, we write :

R

u
Y]
2

=4

K
A

where U is the temporal mean value of velocity and A is the exchange magnitude
which is the turbulent analog to the viscosity constant. The exchange magri-
tude is not corstant, however; rather, it is different from place to place in
the fluid. The essential now is to bring exchange magnitude A into corre-
lation with the velocity distribution. For this we conceive of the velocity
as decomposed, according to Reynolds, into a temporal mean value and dev1a—
tions therefrom. We therefore write

n=g-4+u, v=i£+v',

where u' and v' are the fluctuations of the x-component or of the y-component
of the velocity. The fluctuations of velocity are the cause of an apparent
state of stress that-is described by the equations

o’x=——~g 12, gy=—pw V' dy=—97_2-. (23)

It is now suggested that we describe the fluctuations of velocity u' and v' in
terms of the "main flow" u, v. Prandtl succeeded in doing this by the follow-
ing. We assume as above in Equations (21) and (22) for the sake of simplicity
that the main flow runs parallel to the x-axis and that a drop in velocity
prevails perpendicular to the direction of principal flow. A length 4 is
characteristic for the turbulent state of the flow, designated as mixing

length by Prandtl. The physical significance of mixing length ¢ is that in
turbulent flow small masses of fluid have an individual motion and are dis-
placed consequently by a certain amount, exactly that of mixing length ¢, trans-
versely to the direction of flow before they mix with the new ambiency. Lf now
a small mass of fluid originating at a locus wi*h mean velocity u is displarced
perpendicularly to the principal flow by leupth 9, its velocity is differon-

tiated from the mean velocity of the new locus in first approximation bv th.

~
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quantity ¢ %%. It is therefore possible to introduce for the absolute value

of the fluctuation of the k—compoﬁent of velocity: . /19

' :l'd ﬁ} . 25

Sy
The fluctuations of the y-component of velocity v' occur because fluid masses
that have a velocity of different magnitude in the x-direction collide and
consequently are deflected laterally. For this reason it is possible to make !
v' proportional to u', thus i

'd ﬁ;’
zzlbiyl' 25)

I
»

Thereby for the shearing stress according to Equation (23), if the constant of
proportionality is included in the still unknown %, we have the expression:

da da (26)

Because one factor is with and the other without indication of quantity,

it is provided that t changes sign with du. Comparison of the Prandtl formula
dy
for shearing stress with Equation (22) shows for the exchange magnitude the
formula: s N
A=pol2|— 27)

This Prandtl formula which yields a penetrating analysis of turbulent flows,
has already in many cases (ref. 22) led to a quite good calculation of tur-
bulent flow. For flows in circular pipes satisfactory mathematical relation-
ships can be found by means of it.

If Equation (22) is divided by the density, we obtain

v_4 du,
e o dy
If we introduce 4_ here, where ¢ is a kinematic measure for the
o—E
turbulent impulse exchange, then
T . du -
0 dy (28)
or 5_—_—;1-:@'
o oY

The kinematic exchange magnitude.f‘is therefore obtained by dividing the
"kinematic shearing stress ' * by the differential quotient of velocity du.

'3 dy
The magnitude of this differential quotient over tue pipe radius was graphical-
ly determined from the measured velocity distributions. Since du and

. ) dy
T _r—ydp

e 2¢ dx’. (deduction as in Equatic: (¥)) both tend toward zero
in approaching the pipe axis and therefore the determination of the impulse

38
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exchange magnitudes in this region is inexact. For this reason the measuring
points for determination of ‘velocity distribution in the pipe axis were placed
closer together. 1In order to plot a velocity characteristic of the measured
velocity values in such a way that they would yield a smooth characteristic of
the du value, the differential quotients are formed at the measured points and
dy ' ) ,

connected by a smooth curve. Now backward from this curve the characteristic
of velocity distribution is determined for small distances from the pipe center.

I
3

208

Q07

as

aos

g%

a0y

Q02—

Qo

!

£
Fig. 26. " %" as a function of y/r for low Reynolds numbers.

It was possible by this method to calculate the ¢ values near the pipe axis
more precisely. In this way the values in the measured range of Reynolds
numbers (from 4°:103 to 3240°103) were determined for the above described 16
velocity profiles which are shown in Table 4. In order to make the distribution
of C values over the pipe radius comparable for all ranges of the Reynolds num-
bers, since & has the dimension of velocity x length, these values are divided

by vgr, whereu*==»% i.e., the dimension of a veiociiy. The actual distances

.from the wall are taken on the pipe raiius. The iciationship ‘ L2y
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is shown in Fipures 26 and 27. If we observe this dependency in Fig. 26, we

see that the £ . values decline with increasing Reynolds numbers to a
1 T
constant value which in this figure is indicated by a broken-line curve. /21
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Fig. 27. & as a function of y/r for high Reynolds numbers.
VAT .
€
In Fig. 27 the 33 values are plotted for Reynolds numbers Re > 100°103,
Within a certain rdnge of scatter they yield a curve that is independent of the
Reynolds number. This curve corresponds to the broken-line curve in Fig. 26.

The broken line curve in Fig. 27, which represents the “‘r. values near the

pipe axis was determined by extrapolation. It is characteristic of the course
of this value that the exchange magnitude at th» wall is zero because here no

exchange can take place; with increasing wall distznce | &_ increases
v 1’
rapidly, linearly at first, and reaches a maxinum at vy = r/2. In approaching
the pipe axis ¢ drops again to a very low value. °“u the increase in the
vy T £ .
vicinity of the wall a more pronounced scatter of v.r  values is observed
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Table 4 . as a function of v
) " o-r Ead
: ‘ T
z r di T ¢ oo B T dn I T du
P o dy ,"v. - o dy v o “dy oLy 0 dy e
i e 418 b, o2 382 emls Re — 6,1 .10%; n, - :-.H cm/'s Re = 9210 py==176 em’s Re- - 16,7 -0, p, =111 .:-
i r- 00 em r o= 03 em r==05 cm . ro- 05 em )
fEXEx PI30 0 6310 00119 | 29,0 9450 1 001135 | A00 | 1392 | 00108} 17T . 2540 000e)
ot 1400 0 3400 0 00216 | 284 S0 0 ot | BTN 738 0,0202 1 1700 1322 00D
07 1055 1 2to0 ] 00w 27,5 38,0 - 9,0320 56,0 454 0,0318 1646 "2 '\ (XX OIS
010 1120 15700 00437 | 26,0 2310 D087 54,1 331 00422 | 1592 581 10040
013 1200 1 111,00 00385 | 252 1630 00572 5101 a3 | 00365 | 1504 405 1006
0,20 TLGR | 900 P0,0650 23,6 1290 0,0678 48,1 187 0,0662 [ 1415 330 1O
a0 1021 | 6401 00835 | 207 93.0 . 0.0825 421 134 00812 | 1240 | 232 | 00x04
040 8750 000 00016 | 17,75 73,0 1 00905 36,1 106 0,0878 | 1062 7 184 | 00s60
0,50 73000 410 00,0033 14,80 59,0 0.0030 30,1 86 0,0904 84,5 ¢+ 152 10076
X 3840 3400 0,000 11,82 50,0 00875 24,1 73 0,0852 70,8 129 1 00=25
0,70 1380 200 00820 8,88 410 00804 18,1 59 0,0788 54,1 104 00THT
.50 205 w0l 00700 5,92 320 00685 120 | 47,0 00659 3,4 BE Ot
000 146 | 152 00502 2.96 220 00500 6.0 33 0,0469 177 1 5% 0
0 0,584 95 | 00322 1L,i183, 138 00317 2.4 20 0,0310 T08) 855 | 0000l
0,08 1,202 671 00228 0,392 98 1 0,024 1,2 14 0,0221 3541 25 0oz
Re  23,3.10%; p, =17,53 cm|s Re == 43,4 - 109, n, =134 crrs | Ke = 105 - 107; p, = 19,05 emy/s Re =105 - 103, pg = 17t cur s
r=05%ecm r =05 cm r=13cm r== 2,5 em J
0,02 302,0 3410 0,0101 1770 1348 0,0098 356 1338 0,0003 297.0 !’ 55 | 0,0091
0,04 296,0 1760 0,0192 | 1735 693 00186 350 698 00175 201,0 1 390 | amT2 .,
0,07 2860 1040 0,0313 168,0 411 = 00304 348 407 | 0,0290 282,0 232 0,0280
0,10 277,0 778 0,0426 162,6 302 | 0,0401 328 302 0,0380 273,0 170 | O)nD)
0,15 2620 550 00542 | 1536 220 10,0520 310 215 00504 258,0 121 l 20496
020 | 2460 448 00625 | 1446 181 | 00594 | 2905 175 0,0580 | 2420 96§ 00580
0,30 2150 318 0,070 | 126,5 129 | 00730 255 125 0,6714 212,0 63 1 O0707
0,40 185,0 250 0,0844 | 108,5 99 | 0,0816 218 97 0,0787 1820 53 | D,0710
0,50 154,0 204 0,0860° 90,4 - 81 | 0,0832 182 79 0,08u5 1515 44 } 00751
060 | 1230 172 00815 | 72,4 68 | 0,0795 | 1456 5 0,0784 | 1210 ang | oo76s
0,70 995 140 00733 | 54,2 55 | 00735 | 1092 533 | 00718 90,9 202 GLTIS
0,50 61,5 110 0,0638 362 ¢ 4 00612 72,8 416 | 0.0610 606 229 1 00610
0.00 30,8 71 0,0455 | 181 30 . 00450 36,4 288 | 00143 30,3 15,8 © 901l
0,94 12,3 478 0,0293 7,24 18,5 0.0292 14,5 17,9 0,0284 121 9,9 1 Oaso
0,498 615 335| 00210 3.62 130 0,0208 7.3 1261 00210 6,05 7.0 0l
€ = turbulent transfer magnitude: ’v*=l/%° = shearing stress velocity
r = d = pipe radius: y = distance from the wall: ® = ghearing stress
3 . :
at the wall: @ = density: du = differential velocity quotient: Re =
. dy ‘
Reynolds number: u = mean velocity. v = kinematic viscosity.
Table 4 continued on p. 42
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Table 4 continued

Re =306 . 109; p, =304 cm/s | Re=1720-10"; p, = 3428 em/s | Ke = 1110 - 10%; p, = 47,2 cm/s Re == 1536 - 107, pg = 621 can ~
r=125ecm r=>50cm r==50 cm r=>559cm

- 0,02 906 1370 00087 1151 T95 ¢ GO083 2185 1117 0.0083 | 3830 1506 | 0 as2e
0,01 837 boqo4 0,0166 {1129 410 0.0160 2140 576 0,0157 | 3750 0 1 [RERIN
0,07 860 416 |. 0,02i2 | 1092 237 0,0269 2075 337 0,0261 | 3630 4600 Goo2hi
0,1¢ 832 . 304 0,0360 {1058 174 0,0354 12007 243 0,0350 § 3510 333 KRN
0,15 85 215 0,0480 | 998 124 0.0470 1898 173 0,0465 | 3320 230 0045
0,20 740 169 0,0577 | 940 97 0.0565 | 17835 134,51 0,062 | 3122 179 00061
-0,30 647 123 0,0692 | 823 68 00705 11560 04,0 | 0,0705 | 2730 127 (,0m91
0,40 555 92,5 | 04700 | 705 53,5 00770 1210 72,31 0,0785 | 2340 07,5 1 0771
0,50 462 76 0,0802 | 587 © 437 00782 {1115 59,2 1 0,0796 | 1950 80,0 ; 00785
0,60 370 62 0,0785 | 470 35,7 0,0766 803 484 | 0,0781 {1560 64,8 1 0077H
0,70 277 51,7 0,0705 352 o 290 00710 6750 39,2 0,0725 | 1170 53,1 I 00709
0,80 | 185 410 | 00595 | 235 230- 00596 | 446 312 | 00606 | 780 419 | 00600
000 | 925 278 | 00438 | 117.5 160 00428 | 223 21,5 | 0.0439 | 390 988 | 0
096 37,0 17,5 | 0,0278 47,0 99 00277 89,3 13,51 0,0280 | 156 18,0 | 0,0279
0,98 185 1231 00180 | 235 70 00196 | 416 961 00197 | 78 128 | 00194

Re = 1959 - 103; p, == 71,5 cm’s Re = 2350 - 10%; o5, -= 683 cm/s Re = 2790 - 107; p, = 74,5 cm/s Re = 3240 - 107, p, = H31 rm's

° r=>50cm r=>50m r=50cm . r =250 cm .

0,02 5900 1890 0,0081 4567 1670 0,0080 | 5460 1860 0,0079 | 6760 2080 | 0.0078
0,04 5770 977 0,0154 14474 872 0,0151 15345 968 0.0148 - 6620 1085 00147
0,07 5595 575 0,0251 {4330 514 0,0248 {5172 573 10,0242 | 6412 645 | 0,0243
0,10 5410 414 0,0338 (4194 370 0,0332 {3000 414 0,0324 | 6210 466 7, 0,0321
0,15 5110 288 0,0459 | 3870 254 0,0447 730 280 0,0454 | 5860 319 10,0442
. 0,20 4810 223 0,0558 | 3730 1985, 0,0051 [4450 221 0,0540 |} 5515 246 1 0.0540
0,30 4210 157 0,0692 3265 133 | '0,0693 {3900 151 0,0692 | 4882 168 | L0697
0.40 3604 118 0,0790 {2800 106 0,0775 {3360 114,7 | 00787 | 4140 - 128 5 00T
0,50 3005 " 98 0.0792 {2330 862 0,0791 2780 95,0 | 0,07186 | 3450 104 © 00797
0,60 2404 81 0,0767 |1865 70,2] 0,0780 |2224 76,7 | 0,0780 | 2760 86,7 ; 0,016
0,70 1803 . 65,6 | 0,0710 |1400 57,01 0,0721 1669 63,2 10,0708 | 2063 69,5 | 00714
0,80 1202 520 1 00596 | 932 45,51 0,0600 11112 505 1 00591 | 13%0 55,7 1 00565
0,90 601 356 00435 | 466 317! 0,0431 556 3451 0,0433 650 38,8 | 00427
0,96 240 22,31 0,0278 | 1864 19,51 0,0276 222 5 2141 00278 276 23,7 | 00280

0.98 120 159 1 0,0195 93,2 1391 00196 | 111 | 1511 00197 | 138 | 168160197

than in the vicinity .of the pipe axis. This is to be explained by the fact
that in the vicinity of the wall there is a greater influence exerted by the

viscosity.
A du , - -
From £==5¢=l v it follows that the mixing length is
. du
{ == E:E:l; (30)

The course of the mixing length over the pipe diameter at different Reynolds
numbers is calculated according to this formula and presented in Table 5.

2/r = f(y/r) shows the dependence of mixing length &% upct wall distance y in
nondimensional representation (Figs. 28 & 29). 1t 1s to be observed that the
mixing length in the immediate vicinity of the wall (to about y/r = 0.07)
increases linearly from zero. Von Karman assumes this linear increase to be

2 = xy wherein y is the distance from the wzll and x = proportionality
constant. This has the value x = 0.38 from Re = 100°103 upward (Fig. 29).
Below Re 100°103 we obtain x = 0.40 (Fig. 28). Above the value y/r = 0.07 the
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1 mixing length increases more slowly and in the pipe axis it reaches a fixed
value of about &/r = 0.14 (Fig. 29). 1In this illustration the valucs of the

i ' dimensionless mixing length for the five Reynolds numbers Re = 105-103 to
3250+30  are plotted. With a very narrow range of scatter they yield the same
characteristic. From this diagram it can be recognized that at further in-

; creasing Reynolds numbers the values of the dimensionless mixing length £/r do
not decrease further at a specific dimensionless wall distance y/r. This is
true because at Reynolds numbers indicated in Fig. 29, the influence of
viscosity is no longer present. Below Re = 100°10 as a result of the effect
of viscosity there is observed the change of the dimensionless mixing length
2/r with the Reynolds number, %/r increasing with decreasing Reynolds number.
Hence we obtain different L/r curves for different Re numbers in Fig. 28. The
dependency ¢/r as a function of y/r as shown in Fig. 29 can be obtained by /22
the following Prandtl interpolation formula

Ur =014 — 0,08 (1 — yir? — 0,06 (1~ yins, (3 )

0,40

from which ld{J .
l{‘l/ ”=o_ ’

is obtained.

When viscosity is also taken into consideration, a dimensionless equation
results for the dependence of the mixing length upon wall distance from the
following operation. The flow ratios in the vicinity of the wall are of course

. determined by the physical magnitudes To. 0, u and y alone.

ey L/@ Y
From these magnitudes the above mentioned dimensionless magnitude .# ¥ ¢ v

is formed. For the mixing length we thus have the equation (ref. 23)

=yt () =y 1. 32

_ My can be regarded as a (variable) Reynolds number in the vicinity
»

of the wall. Function f is to be determined empirically. Since

R VS L 3%
Vy = p‘—‘ Efl,’/' (‘3,
dit v, 12
- eem = 34
ay 1 y-fup ( )
. .
or after integration B vy Ay (35)
=1y rm’

Yo

This formula obviously links the velocity distribution to the law of resistance.
The lower limit of the integral that is here designated Vo assuming an
adequately exact formulation for f(n) in the vicinitv oif the wall, is equal to
zero in a smooth pipe and in a rough pipe it is equal to a length characteristic
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for the roughness. The determination of the f-function follows from the meas-

ured velocity distribution, in that first % is calculated and then &/y = f(rp.

This relationship is presented in Fig. 30 (Table 6) in logarithmic scale. Each
curve from top to bottom corresponds to a specific Reynolds number that is set

down as a parameter. The uppermost points of the curve are in the immediate

. ‘ vicinity of the wall. The curves from left to right connect points of equal
y/r value. In addition the diagram shows that for a specific y/r curve above
Re = 100:103 the log (&/y) values are equal for all Reynolds numbers. . /23
Table 5

% as a function of y

r r
r = pipe radius; y = distance from the wall; Re =
= mean velocity; v = kinematic viscosity.

£ = Mixing length;
Reynolds number; u

lir lir - lr lir lir Ur Ur I

yir Re=4,0-103 | Re=6,1-10%3 | Re=9,2.10% | Re=16,7-10% | Re=23,3-103 | Re=43,4-103} Re=-105.10% | Re.- 205.10*

r=0,5 cm r=05 cm r=0,5 cm r=05 em r=05 cm r=10 cm r=19 cm r-25 em
0,02 0,0120 0,0114 0,0110 0,0104 0,0102 0,0099 0.0094 0,0052
0,04 0,0220 0,0212 0,0206 0,0197 06,0195 0,0190 00179 a.0175
0,07 0,0351 0,0340 0,0330 0,0328 0,0325 0,0315 0,0300 0250
0,10 0,0460 0,0446 0,0444 0,0432 0,0428 0,0423 0,0400 0,00384
0,15 0,0634 0,0616 0,0614 0,0606 (,0588 0,0564 0,0546 003532
0,20 0,0758 0,0752 0,0742 0.0720 0,0700 0,0665 Q0652 1,064
0,30 0,0996 0,0978 0,0968 0,0960 0,0922 0,0872 0,0850 RIS
0,40 0,1180 0,1156 0,1132 0,1120 0,1088 0,1049 0,1015 f1016
0,50 0,1320 0,1304 0,1276 0,1218 " 01216 0,1173 0,1136 0,1120
0,60 0,1422 0,1372 0,134 ¢ 0,1304 0,1288 0,1250 01236 0,12i0
0,70 0,1492 0,1454 0,1440 0,1400 0,1374 0,1346 0,1310 G.1305
0,80 0,1520 0,1520 0,1472 0,1432 0,1428 0,1383 0,1367 0,1360
0,90 0,1590 0,1564 0.1486 0,1450 0,1440 0,1417 ° 0,1398 0,1345
0,96 0,1608 0,1574 0,1548 0,1500 0,1466 0,1454 . 0,1418 01411
0,98 0,1614 0,1572 0,1564 0,1540 0,1480 0,1464 0,1430 0,1400

Re=396.103 Rezfﬁé‘-ﬁ-lo“ Re=1110-10%| Re-=1536.1071 Re = 1959.10%] Re =2350.103| Re=2790.10%{ B¢ -3240.10°

r=25 cm r=2,5 cm r=5,0 cm r=5,0 cm r==>350 cm r=50 cm r=50 cm r=>59 cm
0,02 0,0088 0,0086 0,0084 0,0082 0,0081 0,0081 0,0080 0,0079
004 0,0169 0,0164 0,0161 0,0158 0.0156 0.0154 00151 0.0150
0,07 0,0282 0,0279 0,0270 0,0262 0,0260 0,0256 0,0251 00248
0,10 0,0370 0,0374 0,0368 0,0356 0,0355 0,0350 0,0342 0,033
0,15 { . 0,0520 0,0509 0,0505 0,0500 0,0496 0,0490 0,042 - Nigs
0,20 0,0645 0,0631 0,0628 0,0624 0,0622 0,0615 0,0607 00604
0,30 0,0830 0,0845 0,0840 0,0820 0,0827 0,0829 0,0826 0,0833
0,40 0,1020 0,0994 0,1011 0,0990 0,1017 0,1000 0,1010 0,1000
0,50 0,1130 0,1110 0,1130 0,1101 0,1120 0,1120 0,1110 0,1130
0,60 0,1240 0,1218 0,1238 - 0,1220 0,1211 0,1230 0,1230 0,1211
0,70 0,1290 0,1294 0,1319 0,1290 0,1294 0,1312 0,1291 0.1310
0,80 0,1329 0,1330 0,1353 0,1337 0,1330 0,1340 0,1320 0,1232
0,90 0,1382 0,1359 0,1389 0,1340 0,1377 0,1360 0,1368 0,1359
0,96 0,1390 0,1389 0,1400 0,1390 04,1391 0,1380 0,1390 0,1400

0,98 0,1400 0,1381 0,1390 0,1380 0,1380 0,1390 0,1390 0.1400
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The equality of these values offers new support for the hypothesis that in this
range of Reynolds numbers, aside from the immediate wvicinity of the wall, there
is no effect exerted by viscosity. :
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Fig. 30. 2g (10 &/y) as a function of 28 M

5. CONSIDERATIONS ON SIMILARITY

Recently von K&rman (ref. 24) succeeded in basing another viewpoint on the
Prandtl law of mixing length.

Concerning the character of the dependence of turbulent stresses upon the
flow field, two basically different assumptions can be made. It can be hypoth-
esized that the turbulent stresses can only be explained by an "integral law"
from the total flow field with its boundary conditions, or that the turbulent
stresses at a given locus are already determined by the behavior of the next
neighborhood in the same way as by a differential law. For the stresses
developed by the molecular motion, i.e., for laminar friction, a differential
law is valid of course: the laminar stresses ~an be expressed by the prevalent

velocity gradients at the locus in question and the couanztant of internal
friction! T du

T=uy (36)

Von Kirmin tests the hypothesis of a citterential law for turbulent flows.
In order that such a law can stand, obviously the secondary motions insofar as
they are coherent, must have no great spatial extent and furthermore they must
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= Table 6 e o
)
] 2= mixing length; y = distance from the wall; n = v 4y dimensionless
” - « ;'- . 3 v
wall distance; vy =V?° = shearing stress velocity; v = kinematic viscosity;
r = pipe radius; Re = Reynolds number; & = mean velocity. .
w Wy | n | by | oq [ Uy | on [ Uy | o [y | on LUy | o Uy o f Ry
vr | Be—4.109| Re=61-10% |Re=92.107| 12c--16,6-10% | Re=23,3-107 | Re=43,4-103 | Re == 105-10%| R -- 205-10""
r=05cm| r=05cm r=05cm | r=05cm r=05cm r=10cm r=15cm r-~25cm

0,02 2.83 {0,600 4,03 | 0,569 5.,75]0,552 9,8 | 0,518 13 | 0,510 22,610,495 50 !0,470 !ﬂ,.%‘n,#'ﬁ
0,04 5,66 {0.550 8,100,531 | 11,5 {05151 19,6 0,493 26 | 0,488 45,210,475 100 10,447 | 18U 10437
0,07 9,900,501 | 14.1 0485 { 20,1 0470 | 342 | 0,468 46 | 0,464 79.110,450 175 j0,430 | 317 (0415
010 14,140,460 | 20,2 | 0446 | 287 10,443 | 19,0 | 0,433 65 | 0,429 | 113,0{0,423 2.0 10,400 | 453 038D
i 015 21,200,422 | 30,2 {0,410 | 43,1 |0409 | 73,4 0,404 98 10,392 | 169,410,376 { 376 10,364 | 60 10,355 i
020 28300379 | 40,3 | 0376 | 57,5 {0,371 | 98,0| 0360 { 130 | 0350 | 226,010,333 500 10,326 1 906 10,324
0,30 | 42,500,333 | 60,5 {0,326 { 863 10,323 | 147 | 0,320 | 195 | 0,307 | 339 10,291 752 10,234 1360 10,282
0,40 | 56,600,295 | 80,5 {0,289 }115,0 8,288 196 (0280 | 260 | 0,272 | 452 {0262 | 1000 ‘10,234 1510 10,254
0,50 | 7070 10,264 | 101,0 | 0,261 [1438 |0,256 [ 245 | 0248 | 325 | 0,243 | 565 [0,2346] 1251 10,227 |22 0,224
0,60 | 850010237 {121,0 |0,229 |1725 |0,224 | 2904 | 0,217 | 390 | 0,215 | 678 {0,2083| 1504 10,206 {2720 .0,
0,70 { 99,000,213 {141,0 [0208 {2010 |0,206 | 342 | 0,200 | 455 | 0,1965] 791 }0,1920 1754 (0,187 |3170 10,186
0,80 113,00 ;0,190 | 1€1,0 0,190 230,0 |0,184 [ 392 | 0,179 | 520 | 0,1785} 904 ]0,1716 2000 {0,171 3620 0,170
: 0,90 | 127,30 10,1765} 1£1,2 | 0,1735 |258,5 {0,165 {410 | 0,161 | 585 | 0,160 |10LT |0,1574) 2260 |0,1555 14075 G155

0,96 | 136,0 ;0,1675|1¢35 | 0,164 12760 {0,1615{ 470 | 0,1563| 624 | 0,153 {1085 {0,1515| 2405 [(P,HTS 4350 0.
0,98 | 138,8 [0,1645|197,5 | 0,1603 |282,0 10,1595 480 | 0,1535| 636 | 0,1512}1109 |0,1480 2460 ,0,1-&6 1440 0

Re=396-102 | Re = 725-103 |Re=1110-10%Re = 1536-103%] Re=1959.103| Re=2350-102|Re-=2700-103 Re =.1240. 10°

r=25cm r=25cm r=50cm r=56,0cm r=50cm r=5,0 cm r==3,0 cm 7=35,0 cm
002! 0,164 |0,439] 0.284] 0427 | 042}0418] 0566 0,411 | 0,704 0,406 | 0,834} 0,404 0,907{ 0,308 1,116,395
0,041 032810423 0566 0,410 | 08410401 1,13 1 0,304 § 1,411 0,389 | 1,668| 0,384 | 1,934 0.378 2,20 0370
007 | 0,574 |0404| 09901 0,309 | 147103S6| 1,98 | 0375 | 2.46 | 0,372 | 2,92 | 0,366 | 3,330 0,338 | 353 0,35
0,101 05200380} 1419|0375 | 210!03671 283 | 0,356 | 3,52} 0,355 | 4,16 | 0,350 | 4.835 0,332 5,53 0,33
0,15 1,230 | 0,347 21221 0,339 | 3,15|0,33G1 4,25 | 0,334 | 5,27 | 0,331 | 625 | 0,327 | 7,25 10,328 ]330 000
020 1,64 ]0,322] 2835! 0,316 | 420[0314§ 566 0,312 ] 7,04 | 0,311 | 834 | 0308 ] 9,67 10,304 | 11,10 S0
030] 2,46 10277 4250 0,282 | 6,300,281 8§50 | 0,274 110,54 | 0,276 | 12,51 | 0,276 | 14,50 (0,276 | 16,655 0,27+ -

)

0401 328 |0,255| 5,65 | 0,249 | 8:40]0253111,30 | 0,248 |14,08 | 0,254 |16,68 | 0,250 |19,34 |0,253 | 22.20. ,
050 | 410 [0227] 7,08 | 0.222 | 10,50 | 0226 | 14,15 | 0.221 17,38 | 0,224 {20;85 | 0.224 {24.20 10,222 | 27,74 0.2
0,60 | 492 |0207) 850 | 0,203 | 12,60 0.206 17,00 | 0,203 {21,12 | 0,202 |2502 | 0,205 |20,00 {0,205 | 73,29 o ¢
070 | 5745 | 0.184] 9,90 | 0,185 | 14,70 | 0.18% { 19,80 | 0,18+ {24,62 | 0,185 [29.19 | 0,188 [33.80 0,185 | 550" O1~’
080 | 656 |0,166|11.32" | 0,166 | 16,50 | 0,160 |22:60 | 0,167 {28,16 | 0,166 33,36 | 0,138 [38,68 10,165 | 44,40 0.it [ |
090 | 772 01541275 | 0,151 {1890 | 0151 (25550 | 0,152 (31,62 | 0,153 {37,53 | 0,151 {43,50 {0,152 | 50,0 0,171
096 | 787 |0145|13:60 | 0,145 | 20,20 | 0,146 {27,20 | 0,145 33,75 | 0,145 [40,00 | 0,144 4642 10,145 | 53,3 '0.145
098 | 805 |0,143]13,90 | 0141 (2060 | 0,142 |27,80 | 0,141 |3445 | O141 [40.90 | 0,142 47,40 0,1422| 5440 0,143
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run similarly in the individual points of the flow field. Since the hypothesis
is only valid for high Reynolds numbers, the influence of viscosity can in
general be neglected. :

The mathematical formulation is now simple. Von K4rmdn now makes
" the not absolutely required assumption for the following operation that the
secondary motion in a system of coordinates which participate in the principal
motion of the locus under consideration is stationary. The entire motion is
considered to be two~dimensional, principal motion U in the x-direction being
dependent only upon the transverse coordinate y. The point of origin of the
above coordinate system we allow to coincide with the point on which we focus,
so that the principal velocity in the nelghborhood of the point in question

will be U”
U=0'y+-5v*+.. (%

The total flow function ¥ with ¢ as flow function of the secondary motion is

"l'(w.y)—g°—3’ +U" Photva@yp. 69

Since Y in the transition to another point will change similarly, it will
change only by a factor A which is a measure of the intensity of fluctuation
movement, and a length measure £ for the spatial measurements of the flow
- field, i.e., if we write
x=1§, y=ly, wv=AfEn (39)

f(E}q) will be independent of the choice of the locus investigated.

If we eliminate pressure p from the Euler differential equations for
smooth, stationary frictionless flow

du du 10p ov ('2:_____1_?."3
ou — u —{-vay

in differentiating the first equation with reference to y and the second with
reference to x and then introduce the flow function by

0

]

u—-U—Fuf% and ,__ow

3
]
I

8l

Yy

where u' and v' are velocity components of the secondary motion, we obtain

pw 04 _dU o4 =0, 40)
'3y oz Tax 0y

where A is the Laplace operator
=5z T o

After introduction of the above equation (38) i the next neighborhood of the

point in question we obtain
w Odw

B Oy Fw 0wy
) O oxr Y q ny

( u+<
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and in the dimensionless magnitudes f, & and n

L ADAf  ABf ., A D
Uil gy —gg —rpe o'+ (o

'

where the differentiation of f now is referred to the new variables & and n.

The prime at U indicates differentiation with reference to y, however. In |
i order that f may be independent of the locus in question, that is form A, &, U, !
and U ", the coefficients of this differential equation for f must be constant.
After division of Equation (42) by é; we obtain

A
. Uo’ df _ 4w 8f 04f_Of a"f)_o 43
Pngg— U T’“(ay 0f 08 0 -
Therefore | va_._ t U"—li=const

o o = const, o 7

must be true, or A U",vii
] lz! 0 13 .

(~ means proportional)
. . ' : o .
or 1~ e A~ -2 ()
v, U,"

For this result the following very clear operation can also be effected
according to Betz (ref. 25):

The fluctuations of velocity of the u-component of a specific layer of
the principal flow with mean velocity U, develop in that as a result of tur-
bulent transverse motion particles of adjacent layers with greater or less
velocity penetrate into layer U,, retaining their original velocity. If these
particles originate in areas which are removed from the layer under consider-
ation by length 2; their velocity U, + 21 U,' and the fluctuation of the u-
component in layer U, is therefore equal to W =1, T, 5y

This concept can be still further extended. In addition to their velocity
U, + 23U ' the particles in the transverse motion also bring along their mean

rotation-
C=rotU=U"

|

Eo = rotation U0 = U,

is the mean rotaticvn in layer U, under consideration and

o - il
fo = h & =L+ uUo".

are the mean rotations in the layers
at a distance of * ¢;. The rotation of ilie paiiicles th:t penetrate into
layer Uo by the transverse motion deviztes thus froi. che mean rotation here

E—L=4HU"

present by the amount
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o e e L e -



BE S

- v

These particles thus constitute a system of dextrorotary and levorotary
vortices, and the turbulent flow velocities can now be regarded as the field of
these vortices. If %, is the average distance of the dextro and levorotary
particles, their diameter is "%,, For flow velocity v = v' between two
vortices we then obtain

i

: H

(6) | /25

¥ o~ L)~ 12'1_l l7of'. )

v

By virtue of the assumed similarity of the turbulent fluctuating movement,
T

u' “v' and 27922 so that instead of % and %, we can introduce a common length
measurement £. Then from (45) and (46) we have
10y ~ Uy
or . .
U,
i~ U 4n

in agreement with the Von Kirmdn result.

L
Earlier, for turbulent shearing stress T we had the equation

byt
=—pun v,

wherein u' and v' are the components of velocity fluctuations.
Therefore . oy dw__ A0f Of
T=05y By CBOE On

or

2 Of Of,
_— 2 2 -, 2.
z pl[Q' 55 ag s
since f is independent of x and y we have confirmation of the Prandtl expres-
sion for the mixing length W T2 '
T=p ttiwi 19)

From this we obtain an explicit formula for 2
L dU U 50)

with a universal dimensionless constant ¥,

It can immediately be said with reference to the range of validity of the
above hypothesis that it breaks off where U' and U" disappear, because then ¥
in the neighborhood of the point under consideration can no longer be approx-
imated as in the above described defect equation (41). It is also immediately
appreciated that the point in which the differential quotient of the principal
motion changes its sign (in the center of the channel) so that on both sides
there is more weakly moved fluid, is distinguished irom the other points.
Naturally the whole hypothesis is incomplete so long as there is no actual
solution of the above defect equation of the required type.

Deduction of the velocity dictribucicir *n mrize and channel

It is nossible readily to calculate the velocity distribution in the

e rroe,
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channel or pipe using formulas (49) and (50) for the shearing stress and the
mixing length, since the shearing stress is linearly distributed here, so that

with 1, as shearing stress at the wall and y as distance from the middle of the

pipe and r as pipe radius we have r==ro%~
4 '

On the other hand according to Equation (49) and (50);

oy (2) |

Y _ At A
t°7=0p(g:y_ =px* lf_qz
dy*) .

i V_r 1

=y e — X ¢
or '3 Uy y’

with - %o,
*”bo

This equation can be immediately integrated

1 Vram—
_._[_]T—_—_Zx Un (Vg a)r

where a is an integration constant or
1 v, 1

U=32y7 -V :

The integration constant a is determined for U' from the limiting conditions.
For very high Reynolds numbers dU near the wall is very large ancd approaches

dy
the laminar value dU = T, which is very large because of the low value of u.
dy u
Without commiting a sizeable error, we can allow the point where dU becomes

dy
infinite to coincide with the wall (y = r). Thus we obtain the integration
constant as ,__yr

1 v 1
Qe 2 o
dy — 2x)r({/r-Vun

and by integration between the limits O and y

E’_m_-%*:'_‘l= —%[m (1 _V_Ti—) +VT'{~] (fjm

The mixing length increases linearly from the wall 2ccording to this
solution which we can demonstrate to ourselves in the following manner. In
this neighborhood the shearing stress is still apprnximately 7, so that here
the equation e

Tp— 0 x? 'l,';;':

is valid. Consequently with yj as wall distance
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U r * 1
) B dy == [U; lr—y —_"fv":i: dy = i
r r

whereby the integration constant on condition of the later refinement (see
section on law of resistance) can be written approximately as zero since U' at

"the wall is actually very great. Hence

T 1 '
= X U —
I.'- STy

and

U ’
‘l=x(~T)=xyl,u - (52

as stated. In what range this relationship is supported by our experiments is
indicated in Figs. 30 and 31.
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Fig. 31. Ums="; 25 a function of y/r.

Law of resistance

Independently of this theory von Kidradn has given a most satisfactory
explanation of the law of resistance in smooth and rough pipes.

He only assumgs with reference to the mixing length that it increases out-
ward from the wall (% = xy where y now again indicates the wall distance) and in
other respects independently of the clizract=r ot the wal. and of the viscosity
it has a similar course: I

»;__.-x_'l (-'/)
r . r r

52

e i
R N e M PO T 0 e




T

i et A R ] BT L B S s T T v

or ,:zx.”.f(g); 3)

- » a . B -

a zone immediately at the wall where laminar flow prevails must of course be
excluded. The condition of equilibrium is dIN2 y
et (g,) = (1=7)

v (Y (D =, G - 2,
*y f(r) (dy)“—l*bqi"73’
and if we integrate between limits y and r, we obtain

Ya=yin

x-y-fy/n

5 iy

or because of Eduation (53)

r
’Umlx—U=v*f -dy
'y

Umax — U%z*g ("Z“) ,

where g is the same function for all smooth pipes. The equatioanm"-'Il==f(y/ﬂ
Ve

has been computed according to our experiments and is presented in Table 7.

Tabie 7

U-u as a function of v/r
Vi
Re 4 6,1 9,2 16,7 | 233 | 434 ! 105 205 396 725 | 1110 | 1596 1 1959 | 2350 | 2790 | 3240

yir U [ U—u|U—n U= |U—u| U=\ U—u|U—u | U=x | U—u|U—n | U= U—w | U—1u U~ /-
S Ve Ve Ve Ve Ve Ve Te Ve Tw S Ye e e Ce o [

1,00 | 12,32 (12,92 (13,48 |12,50 15,20 {1550 |14,60 |16,65 [ 16,30 | 1490 [ 15,60 | 16,00 | 14,90 15,09 ] 13,80 | 1550

0,08 866 | 8.98 | 915 | 865|963 1948 {1060 |10,59 [10,20 [10,54 | 11,06 [11.05 [10,00 [ 10,36 | 10,50 | 16,52
0,96 740 | 765 | 7,80 | 7,45 | 806 | 800 | 888 | 895 | 850 | 871 | 883 | 911 | 854 | 879 | 930 | 8.
0,93 620 | 6,36 | 676 | 639|686 | 674|751 | 764 735 | 7,31 7,50 | 751} 735 | 7,39 | TS50 vou
0,90 553 | 563 | 574 | 567|606 |59 | 662 | 666 645 | 645 | 655 | 641 [ 6,45 | 6,33 | 647 | 645
0,85 469 | 4,73 [ 470 | 477510 | 505 [ 561 | 556 545 533 535 | 549 537 525 | 528 | 529
0,80 404 | 4,06 | 407 | 414 | 442 | 435 | 484 | 465 | 466 | 456 | 452 ] 4,50 | 460 | 445 | 440 | 445 ]
0,70 302 | 305|310 | 320|328 {324 (352|350 345 3,40| 336 | 328 338 | 328 | 318 3,3¢
0,60 226 | 232|232 | 233|242 | 238258 | 264 258 | 2,52 ] 250 | 240 253 | 2,40 | 238 | 240
0,50 168 1171 | 1,74 | 173 1,74 175 [ 1,89 | 1,05 | 1,87 | 1,80 1,77 [ 1,75 1,82 | 1,70 | 1,71 | 1,74
0,40 1,21 { 1,23 11,20 | 124 | 1,23 | 1,19 | 1,26 | 1,38 | 1,31 | 1,24 | 1,20 | 1,17} 1,24 | 1,11 | 1,17 | 1,56
0,30 081 [ 083|084 | 083077 [ 078 (084 | 08| 082] 080 0,76 | 0,35 | 0,72 | 0,70 | 0,77 | 0,72
0,20 039 | 048 { 052 | 0,48 | 0,43 | 045 [ 047 | 057 046 | 045 0,40 ] 0,39 | 0,37 | 0,34 | 0,42} 03¢
0,10 013 | 020}0,19 | 019 | 0,143 0134| 0,158 0,20 | 0,16 | 0,16 | 0,15 | 0,14 | 0,13 | 0,09 | 0,17 | 0,1
0,04 0,05 | 0,07 | 0,065| 0,06 | 0,046| 0,067{ 0,052| 0,03 | 0,67 | 0,04 | 004 | 0,05 | 004 | 0,03 | 0,05 00

0,02 0,03 | 0,02 | 0,026] 0,04 | 0,023] 0,037] 0,026 0,02 | 003 | 02| 0,02 | 002 001 | 002} 001! 00"
0,00 0,00 | 0,00 | 0,000 0,00 o,ooﬂ 0,000| 0,000] 0,00 | 0,00 0,00| 0,00 0,00{ 0,00 000 | 060} 0"

. . T
U = maximum velocity; u = actual va2iocitv; v, = /Z} = shearing stress
velocity; Ty = shearing stress at che wall; q = (p pressure head of
0=
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maximum velocity; € = density; y = distance from middle of the pipe;
r = pipe radius. .. . - . . . . .
i
This dependency is illustrated in Fig. 31. The solid line of this figure is
the velocity curve according to equation (51) with y = 0.36. The dashed curve
"is drawn through the experimental points. It is to be noted that in the
vicinity of the wall the calculated velocity curve shows a deviation from the
measured one. This is true because the hypothesis of similarity is not ful-
filled in the vicinity of the wall where an effect is exerted by viscosity.

. Friction or roughness consequently has an influence only on the interior
in the form of a limiting condition. This is found by von Kdrmin in smooth pipes
in the following way. In a thin layer at the wall, of density § the velocity
is determined only by the viscosity. Thereby the velocity distribution cal-
culated according to the above formula, using the mixing length, is conformed
to. This is of course a very simplified description of the effect of
viscosity. £ must therefore be assumed only up to the value x8 . According
to the known concept that led according to Prandtl and von Karmdn to the law of
velocity in the vicinity of the wall (1/7 exponential law, etc.) on the other
hand, § can depend only upon the physical magnitudes in the vicinity of the

wall Ty ©5 U We therefore write
§=2=.2
=

where a again is a dimensionless constant that is independent of the Reynclds
number. In the laminar layer t, = u du; at the boundary we have the velocity
dy
o

Uy="v,.
1=

Velocity outside the laminar layer becomes

] ————
. Y _~_1 . T
v,==[U*V(L_r)x,yfw”jdy+Ll

Since the essential increase in velocity occurs very near the wall, it is
sufficient to carry out the integration with f£(y/r) = 1. Thereby, with new
constants c¢ and 8, there will be in approximation -
. . .

X

. 1 é .
Umax = Vs [c—-ln—x—-}-a] = - v, [In

v 4 -
R

If we introduce the resistance coefficient derived from maximum velocity

and correspondingly the Reynolds number
U“il . C

1 mer
Remax = — v

then 1

. 4

1 /- R L o-
== — = n (Hemax V lp) . (76)
Y + x)2 '
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The values for this equation as determined by experiment are presented in
Table 8 and illustrated in Fig. 32, nl_' is plotted as ordinate and the
Ve
usual log of Remax-VJ as abscissa. Since the similarity hypothesis

strictly speaking refers to frictionless fluids, and for this reason for the
comparison with the experiment only flows are involved in which the effect of
viscosity in the pipe interior is very slight, we have plotted a straight line
(1) through these points in which the effect of viscosity is practically no
longer present. Fig. 32 shows that below log (Repax WD ). This
signifies that effect of viscosity with declining Reynolds number is increas-
ingly strong. The straight line is described by the equation

1
7= 44 Big (Rema Vw) (56a)

Constants A and B were determined from this figure and yielded A = 4.75; B =
3.77. As the hypothesis indicates, the equation of this straight line is
valid for all flows that are not influenced by viscosity. For this reason we
are justified in extrapolating the dependence 1 - of log (Repax Vo)
for any magnitude of Re max” |

We also plotted a second straight line (2) for the following calculation
of approximation, referring especially to the points in the middle range: the
equation is )
1 T’IT = 4,164 3,90 g (Remax V) . (56h)

l['

Similarity hypothesis =-~nordirg to Pra-.itl

The basic concept of the above minutely described von K4drmédn hypothesis of
similarity is the assumption of the geometric and mechanical similarity of the
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turbulent transfer mechanism. Through the hypothesis that the turbulent
fluctuation motion im different loci of the principal flow is distinguished
only by a length and time scale, von K&rm4n came to'his law of universal velo-
city distribution for channel and pipe flows.

| ' Co - ' "Only the first and second

¥ 1 differential quotient du and du
- dy —g}';z
of the main flow u = u(y) are taken
.J/ into consideration. Prandtl (ref. 26)
_4{ takes the view that such a similarity
_j/> of the secondary motion can strictly
4

speaking only be anticipated if the

¥__,,//){7 _ same similarity satisfies the
Q= principal motion.

Fig. 33. Definition sketch, Let (1) and (2) be two points of

the profile of the main flow, then at
the transition from (1) to (2) we have to change the scale of length such as
y and the time scale such as y (y = distance from the axis of similarity).

u

The most general velocity distribution u(y) which fulfills the similarity
hypothe51s, i.e., whose curve upon change of the y- and u-scale coincides with
the former curve, is represented by the equation y—ayr4 b, ' 67

where a and b are constants. Earlier we introduced the characteristic magni-

tude vy = 1/1 for a turbulent flow ( =g v ). The magnitude v,

0' -
defined in this way by turbulent shearing stress t,, which magnitude has the
dimension of a velocity, can be considered as a measure for the turbulent
defect mction. Because of the equality of two systems of coordinates which
move toward each other with constant velocity, the turbulent fluctuation veloc-
ity at any point of the flow cannot depend upon velocity, u,_of the main flow
but only upon the values of the differential quotients du, d”u ...at the point

dy dy

in questlon and additionally upon distance y of the point from the axis of
similarity. Prandtl establishes a simple equation with at first undetermlned

exponents p and q :
vy P (d u) . (58)
d 8 ‘

The sole possible value for which this formula is dimensionally correct is
Pp=1; q =1, so that we have du .
Vg = & - /d'/'

where x signifies a universal constant. Prandtl now takes 1T = const and also
v, = const as the simplest case. It is then possible to integrate the last
equation, to obtain ! =
d ? Vu—l*mU+4mmt—-rln(;)- {39)

0’
It can be stated concerning constant Yo that it has length as a dimension. It
is a measure of the density of the laminar layer in the immediate vicinity of
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55 286,0 58,1 ,1300 3,240 17,921 120 | 2453 11350 16,250 51,0 221
56 87,5 18,0 ),01520 1,125 1604] 121 | 2206 1470,0 | 5,200 64,2 22 80
57 111,8 23,0 0238 1,405 16,351 192 | 2445 16500 15,800 715 23,0
58 1254 25,7 ),0296 1,762 1643 123§ 21 1R100 | 5.86 70,0 23,0
59 142,3 28,0 0373 1,680 16,60 124 | 2525 17010 {604 735 o8l
60 171,0 35,2 10511 2,06 17,10 125 | 2756 -1930,0 | 7,20 83,2 232
57
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Key for Table 8:

- a0 » ’

Y = 15 = Coefficient of resistance with reference to maximum velocity;

q
T, = shearing stress at the wall; q = ¢ U2 = pressure lead of maximum
. - . 1 i - . . .
: - . -2
velocity; é = density; Re = U:r = Reynolds number of maximum velocity;

: _ v
r = pipe radius; v = kinematic viscosity.

the wall. The sole possible length that can be formed from the characteristic
constant of turbulent flow is v . We therefore write

Vi Y = Zahl- L =m (60)
v l’* U* -
Therewith from (59) u==3§{1n2;ﬁi_4n,n}
or ﬁd=l{my'w_4nm}, 61’
Uy X v
. )
and with l‘—:(p und 2 f=1q
Vg 4
we have p=A+Blny. ©2)
The measurements produce Ao — 1 Inm=>55, B=i=2,5, —-o40 and _1
* x x=0 m=g

The density d of the laminar layer is therefore of the order of magnitude

1 v

Yo="9 ;-

vy’

whereby nothing can yet be stated concerning the numerical factor supervening
at y . Equation (62) is exactly the same expression for velocity distribution

s . . . . . . . -
.that von Kirmdn arrives at with his hypothesis of similarity, which moreover was
j to be anticipated. ’

6. LAW OF RESISTAYCE

The coefficient of resistance X = dp . d which has already been defined
dx q
was determined as a function of the Reynolds number over a large range and is
presented in logarithmic scale in Fig. 34. The plotied points (Table 9)
represent the value log (1000 A) beginning with ve¢iy low Reynolds number of
about 3°103 on to the upper limit. The measured values up to Re 100°10% (log
Re = 5) are in good agreement with the Blasius formuia'k; = 0.316 which in
Re 1/4

this figure is represented by curve 1. Above this limit the measured A-
values deviate more and more from the Blasius line with increasing Reynolds
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number. Lees (ref. 27) &ttuctured a formula 155”4;

i ‘ from the measurement$ by ‘Stanton and Pannell, which ektended to Re 460103

(log Re = 5.67), namely A = 0.0072 + 0.6104 Sirnce our measurement results
. Re 0.35.

.are in agreement with those of Stanton and Pannell, they are. also represented
in this area by the Lees-formula. Outside this range our measurements deviate
from the resistance values of the Lees curve, indicated by 2 in Fig. 34. As
can be seen from this figure, the deviation is larger with increasing Reynolds
number. Recently Schiller and Hermann (ref. 28) set up the formula of
approximation 0.161

‘Rc3

» = 0,00270 4-

on the basis of their measurements and ours, according to the Lees formula
A =a+ _b . In the present formula ¥ = A and Re = u.r. Since it is common
~ Re” 2 v
generally to relate the Reynolds number and the coefficient of resistance to
the pipe diameter, we recalculated the Schiller (ref. 29) formula on this basis. -
This produces the formula

= 0,0054 4"~ ' "3

which is represented in Fig. 34 by the dot-and-dash line 3. It is to be noted
that the Schiller curve coincides with that of Stanton and Pannell up to
Re 4.6°10° (log Re = 5.67). From there on the Schiller curve agrees with the

’ values determined by us to about Re = G+d = 2.5:10° or log Re = 6.4.
v
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Table 9. /30
' ’ . : 1
log » or wu Nr. woemfs | v em¥s | fe 1077 :1], Dyn’em? A Rel s - 10 : I/,) [
Unax o
: . : b . dd=1cm - ‘ i
; ; i 1 C438 1 006l t 307 008 10,0426 - 0.634 4,55 a,7450
as a function } , 185 | 0015 | W50 o0G | 001 0,750 192 ] 0o
of log Re and 3 514 | 00135 3,81 00550 00408 0,770 495 .00
as a 4 57.5 00135 1.27 O0LT6 0,099 0,854 5,00 0471
5 620 | 00135 & 450 G750 | 00388 0,906 508 07l
- 6 02 ooy 1 520 0,0038 0.0372 1,004 5,18 0,70
function of 7 69 10013 5,70 01100 | 00363 1,086 525 | 070
o 8 985 | 00135 7.30 01700 | 0,0343 1.352 540 | orise
log _Re 2 9 1188 | 0,013 8,80 0,218 0,0326 1,590 5,74 0,758
10 1210 | 00135 | 897 0,245 0,0329 1,626 5.52 0,794
3 = mean 1i 1375 | 00135 ; 109 0,3012 0.0311 1,800 5,67 0,791
- 12 1633 | 00135 12,1 0,400 0,0204 2,075 583 | 0,793
velocity 13 189.0 | 0,0135 14,0 0,520 0,0285 2,362 5,92 05
14 2260 | 0,0135 16,7 0,723 | 0,278 2,785 6,00 | onil
vy = 15 311,0 | 0,0136 230 1,255 0,0254 3,663 6,28 0515
. - . ’ d=—2cm
. . 16 1146 | 0,0135 17,0 0,092 0,0274 2,81 6,04 0,500
kinematic 17 1484 | 00135 220 0,142 0,0253 3,50 629 | 0x07
viscosity; 18 1755 | 0,0135 26.0 0,1966 | 00250 411 6.33 0105
19 2125 | 0,0135 31,5 0,274 0.0237 4.85 6,50 | 008
20 240,0 | 0,0135 5.6 0,329 0.0224 5,33 6,68 0.516
u= gé 2144 | 0,0119 36.0 0,264 0,02243 5,40 6.68 | 0800
: ; 2336 | 0,0119 39.2 03104 | 0,0223 5,85 670 | 0806
viscosity 23 2580 | 00119 | 432 01368 002274 651 664 | Oxl4
constant; 29 2596 | 0,0117 444 0,372 0.0216 6,53 5,50 0,518
gg 2'{'5,8 0,0119 16.4 0,414 0,0212 6,16 6,86 0,518
o 315 0,0119 53,0 0,514 00196 7,42 714
@ = density; 27 349 00119 58,7 0622 | 0,0201 8,33 7,08
gg 3;0 8,0119 62,2 0,680 0,8188 8.52 7,30
- 392 ,0119 66,0 0,758 0,0194 9,19 7,18
Re = Reynolds 30 425 | 00119 | 714 0.874 0,0190 9.84 796
number; 31 454 0,0119 76,2 0,990 0,01885 10.45 7.98
32 495 0,0119 83.3 1,160 0.0188 11,41 7,29 !
d = oi 33 5336 | 0.0119 89,6 - 1,324 0,0183 12,11 740
= plpe 34 638 0,0119 | 1073 1,850 0,0178 1433 7,50
diameter 35 687 00119 | 1152 2,064 00172 15,12 7,62
36 752 co119 | 1265 2,405 0,0167 16.35 7,74
37 811 0,0118 | 1375 2,783 0,01665 17,74 7,76 ;
dp = pressure 38 863 00118 | 1460 316 0,0166 18,80 771 |
dx 39 972 00116 | 1680 3,88 © 0,01614 21,32 7.88
40 1053 0,0116 | 1820 4,44 0,0157 22,93 7.94
drop
=3 cm i
41 402 0,0114 | 1060 0,495 0,0180 14,22 746 0832
A=4dp. d-= 42 439 | 00114 | 1155 0,570 00174 1525 758 | 0828
dx q 43 488 00114 | 1235 0,700 0,0173 16,90 7.60 | 0824
‘s 44 559 00114 | 1470 0,870 0,01638 18,81 7,82 0,850
coefficient of 45 627 0011t | 1650 1,092 0,01638 21,11 782 | 0x31
resistance 46 688 00114 | 181,0 1,246 0,01549 2254 | 8,01 0,840
47 756 00114 | 1990 1,520 0,01560 24,86 8,01 0,839
-2 48 879 00114 | 2310 1,070 0,01500 28,30 8.16 0,441
Q=@ u_= head] 49 1010 00115, | 2660 2,545 0,01470 32,30 8,24 0,843
2 50 1106 0,0115 | 28806~.] 2990 001435 34,50 8,35 0,548
pressure of mean . d=5cm
velocity; 51 91,4 0,01233 37,0 00136 : 00200 5,61 6,59 0,812
52 1244 | 001233 | 50,2 0,0331 0,02104 7,30 6,90 0.518
53 1720 | 001230 | 700 0,058 60195 9,78 7.16 0.x19
Upax = maximum 54 2035 | 001230 826 0,0787 COIRG 11,26 7.34 0,519
velocity 55 2370 | 001230 ] w5, ¢ 100 | 0,018%i 12,96 7,44 0,529
) 56 | 71,2 | 0012144 93 | U020 ¢ 00u 4,40 6,66 | 0514
60
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r. i cm's | v emds | Re1070 Zl Dyn/em? 3 Re Y1077 /1
Table 9 3 T Vo
- LR | ’ o d=5<cm . ’e -,
- contin
57 N8 1 001014 37,4 ()_mfl()( E},._,}{;a tlon)a_u: 6,66
38 1025 | 00122 42,0 0,0237 0, 0220 6,23 6,75
50 1165 | 00122 41,7 0,0298 02146 6,48 6,83
1g X or _ 50 1400 1 0012151 578, 0,040 00204 8,23 7.00
u depen- 64 1335 1 001215 | 632 0,0450 0019490 LRI 1,09
. 62 1795 | 001215 73.8 0,0630 001915 10,21 7,23
max ﬁ 63 2144 001214 88,3 0,0360 (L0180 11,95 7,40
dent on lg 64 103.0 | 0.0134 38,4 0,0240 0.0222 5,12 6,71
Re and 1 6> 141.0 0,0133 33,0 0,0423 0.02085 7,65 6.93
— 66 1945 | 0,0128 76,0 0,0701 0 01K2 10,25 742
/"'}\— 67 423,5 0,01235 1715 ¢ 0,296 001617 21,8 7,86 |
) 68 395,0 0,092 | 2134 1L 0,250 0,01567 26,71 7,99 i
d d 69 570,0 | 0,0097 204 0,488 001470 35,63 8,26 l
ependent ony 7o 652,0 | 001235 | 264 0,640 001175 32,18 8,24 !
lg Re v ) 71 733 0,00025 396 0,757 0138 41,53 8,51
T2 740,0 | 0,00025 | 400 0,752 001344 46,40 8,63
73 9128 | 0,00925 | 4934 1,140 001325 56,8 8,69
T4 1082,0 0,0081 670 - 1,470 (,01229 74.3 9,02
d=10cm
5 345.9 0,01083 3189 0,0868 tN421 48,0 8,39 Hd
6 377,1 0,01080 344,6 0,1008 BRI G 41,06 8.49 33
7 3927 | 001083 | 3630 0,1092 ©,01390 42,50 8,48 57
78 466,3 0,01080 431,5 0,1492 0,01342 50,00 8,62 6
9 4828 0,01079 4468 0,1582 001334 51,6 8,66 59
80 . 510,0 0,01079 | 4720 0,1760 0,01328 54,40 8,67 5
81 533,2 0,01080 493.7 0,1920 01324 56.82 8,69 ;
82 569,1 0,01079 { 562,6 0,2175 01320 60,50 8,71
83 602,0 | 0,01072| 597,0 0,2340 001277 3,30 8,87
i 84 . 660,3 0,0110 600,0 0,2840 0,01277 /7,80 8,86
| 85 704,0 0,0111 634 0,316 23,0125 70,90 8,95
86 769,8 0,0110 700 0,387 ,0129 74,50 8,80
- 87 876 0,0121 725 0,480 1,01223 80,40 9,02
' 68 810 0,0111 737 0,422 9,0126 82,50 8,91
| 89 - 8434 0,01004 771 0,444 0,01227 85,42 9,02
i 90 940,0 0,01086 | 865 0,536 0,01188 94,24 9,18
91 790 0,0077 1025 0,372 nn1170 110,9 9,25
92 1248 0,01125 | 1108 0,92 0,01159 19,3 9,29
93 882 0,0077 1148 0,455 0101146 123,0 9,34
04 944 0,0077 1225 0,522 0,01130 151,25 9,33
95 1005 0,007 | 1320 0,576 201118 139,60 9,46
96 982 0,0072 1364 0,540 i,0110 143,20 9,53
97 1020 0,007t | 1438 0,506 0,01122 152,3 9.45
98 900 0,0070 1285 0,471 01144 137,5 9,35
.99 685 0,0070 979 0,278 0.01161 105,0 9,28
R O 761 0,0070 | 1088 - 0,340 00015 116,7 933
101 830 0,0070 | 1185 0,400 0,0114 1266 9 47
102 958 00070 | i368 | 0,522 0,01115 1444 9,47
103 259 001087 | 238,8 0,514 0,0150 29,25 8,17
104 286,8 0,01083 1 2644 0,612 0,01459 31,92 8,29
105 309,5 | 0,01033 | 2854 0,708 0,01446 54,30 8,32
106 3254 0,01083 | 300,0 - 0,788 0,01457 36,24 8,28
107 726,0 0,0122 595 0,340 0,01265 66,90 8,90
108 806 0,0121 666 - 0,416 0,01255 74,60 8,93
109 1013 0,01125 | 900 - 0,623 0,0119 98,10 917
- 110 1325 0,01125 | 1178 ° 1,015 0,0113 125,2 9,41
111 1691 0,0110 1539 - 1,600 0,01098 1614 9,54
112 1765 0,0110 1600 - 1,670 0,0105 164,0 9,76
113 1410 0,0083 1700 - 1,070 0,01060 175,1 9,71
114 1926 0,0083 1850 2,000 0,01058 190,4 0,72
115 1630 0,0080 2038 1,420 0,01043 208,0 9,80
116 1630 0,0079 2062 - 1,415 0,01045 2105 9,79
117 1758 0,00825 | 2130 . 1,615 0,61029 2160 9,87
118 1940 0,0084 2310 1,910 n0eNGa3 1 T 2308 10,02
119 1939 0,0082 2351 - 1,94 0,01621 2375 9,89
120 2150 0,0110 1964 2,149 30,0106 2023 9,71
121 2010 0,0078 2580 *2,050 i G090 257,2 10,02
122 2150 0,007) 2722 2,317 0,0098 269,5 10,10
123 2162 0,0077 2810 2,345 0,00985 279,2 10,06
124 2220 0,007+ 3000 2,470 0,00988 208,2 10,06
125 | 2425 [ 00075 | 3230 2,48 0,00960 | 3210 10,07
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T From log Re = 6.4 on the Schiller curve deviates from ours. This deviation

increases with 1ncrea51ng Reynolds number. The dev1atlods of the Lees and
Schiller- Herrann formulas from the measured curves. occur because the formulas
are calculated directly from the measurements and therefore they are only
correct to the extent of the experiments. We have now succeded by another
method which is described below in establishing a formula of approximation

“which rélates to the upper limit of the Blasius law, and whose validity to Re =

i

1°108 (log Re = 8.0) seems to be confirmed. This formula is represented by
‘curve 4. It will be noted that this curve at the upper limit (log Re = 6.4)
deviates downward from the Schiller Hermann curve, and at Re 1.10° it deviates

" 'more pronouncedly from the Schiller curve than the latter does from the Lees

curve.

_ Previouslmethods only give us formulas for the range that has been /32

i tested experimentally. Von K4rmdn's formula on page 43 suggests a similariy
! constructed formula, however, namelv

V" A4 Blg(ReV 7). 1
by , , -
The distinction lies in the fact that Von,Kérméh relates the resistance and
Reynolds number to maximum velocity and pipe radius, whereas we use the mean
velocity and the pipe diameter. If we write ! __  and log (Re Jd)=gq, )
Va
the equation then takes the form
: y = A+ Bx
1

In Fig. 35, y =s21 is plotted according to the measurements as a function of

= log (Re )}z ) (Table 9). We thus obtain straight line 1 and for constants

A and B we have the values A = -0.8 and B = 2.0. 1In Fig. 35, the experimental
results of various investigators are plotted, whereby in laying down the
straight lines less weight is placed on the Ombeck values because these exper-
iments that were performed with air are somewhat less certain on account of the
changes in volume of the air. From x = log (Re :/ ) we calculated the value
Re /5, divided by 1 =/ and obtained the Reynolds number. Thus we have

y
obtained a dependence of the coefficient of resistance upon the Reynolds
number from the above equation A = f(Re).

It can be anticipated with a certain probability that we may extrapolate

rather widely from this formula, even though not to R = @ as in the von Karman
formula. - D

In Fig. 36 the relationship A = f(Re) is shown as it appears if extrap-
olation is carried out to high Reynolds numbers, to Re = 1- 10% with the
constants A and [ as determined by measurement. T

We can now apply this formula in a similar manner to obtain a more
convenient formula of approximation for ) than Lees and Schiller and Hermann
have done on the basis of <rperiments. The range of the new formula is to be-
gin wheresthe Blasiu= formula leaves off. At the end of the range we establish
Re = 1°10°,
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From curve 4 of Fig. 34 we find for the constants of the approximation

fornula- : s, A =a+ b,
. . ’ Ren
the values a = 0.0032 b = 0.221 n = 0.232;
. L o, o
and ‘thereby A= 0,;’003’2—},—,,1—2&;7,— . (63) _

[

In order to test the above formulas of Blasius, Lees, Schiller, Hermann

and ourselves, in Fig. 37 the relationship 1 _ .. n was calculated
; Vi f llgRe} D)}
and plotted according to the respective formulas. The plotted points are
calculated from our measured values. Below log Re/ A = 3.7 the values of
1

:Fifzz are below the straight line. This is to be explained in that the
effect of viscosity at these Reynolds numbers is substantial. Above the in- )
dicated limits the effect of viscosity is negligible and the experimental points :
lie on the straight line. Curve 1 calculated by the Blasius formula deviates )
from straight line 4 below log ( Re v A ) = 4.0 (corresponding to_about Re
40:103). Above this indicated Reynolds number to about log (Re v A ) = 5.1
(Corresponding to a Reynolds number of about Re = 100°103) the curve is super-
imposed on straight line 4. 1In its further course, curve 1 deviates upward
pronouncedly from straight line 4. In addition curve 1 shows, in agreement
with earlier findings, that the Blasius law is only valid to log (Re vV ) )/33
= 5.1 corresponding to a Reynolds number of Re = 100-103. Curves 2 and 3
are calculated according to the formulas of Lees and Schiller and deviate at
log Re v A ) = 4.7, (Re about 4.5'105), and at log (Rev¥ A ) = 5.25 (Reynolds
number about 1.9:10°) from the straight lines. If we plot the resistance values
of curve 4 for Re >1-108 a corresponding deviation occurs here also.

For the following calculations of approximation still another straight line
(2, Fig. 35) is plotted with the equation

i [ ‘- Z ..]_, @ ey -
w&'.’“ : T- . _.__—-I P ~-——~—.—~~.IT_[_I| I__‘
B N IR
100 ./_Z/w_o'ﬂ_).! \_\SS% [ P | — — i !__l_‘
L Q“%Q_.
. §
12 [ _3\7% Lo
. i %%-_ i R |
' \\.‘““W - _
1n ! B N ‘h“q,‘ . — _L
, w1 N
I I RS2 T B i
L ]
] L
g I~
el S [ [ 50 5 54 62 64 70 7 e

Fig. 36. 1lg (1000 X) as a function of lg Re
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7. Relation betwq.rL the mean and the maximum velocity
a) According to a'proposal of Prof. Prandtl the von Karm&n law of resis-

tance, Equation (56b) is correlated with our Equation (64b) by means ot

. - . ‘Equation (54): vy ., .- ] o

’

From this the mean velocity u can be determined by graphlc integration,
with U - u- as function of (y/r)2, so that we obtain
s

U"'Z.—__ number = B. (0t)

Yy

By developing the integration we obtained 8 = 4.03. With this relationship
we obtained the connection between the von Kdrmfn law of resistance and ours in
the following manner. From von Kdrmdn's Equation (56b), we introduce

U.r .
Remes =3~ and Vo =1a145; v

.

it follows that

U_a+B lg[l 414 (7 ')]

vy

or

vE_A +Blg ("*’). | (67)

Analogously, from our Equation (64b), if we introduce

/ S

-2r _ v_*-
Re==""" .4q Vi=262873

we obtain
%

-—-a+b]g[2828 )]

Vi
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. a b ]p;('v::i ') (H%)
. L P T, A

i ' R . R .
‘Equation (66) now requires that constants B and b in equations (67) and (68)
be in agreement. This equation can be used by balancing between the dif-
ferent diagrams to derive the best value of B = b. From this balancing,
reference is made to the previously mentioned straight line 2 in the figures.
The optimum value of B = b was 5.52., With this we determine further

A = 5,87 a = -1.555
and hence
A' = 6.68 a' = 2,63

By introduction of these values and subtraction of Equation (67) and (68)
it then follows that

U—1u
Uy

= 4,08, 69) |

which is in good agreement with the earlier result. 1In fig. 38 the experi-
mental values U and § are plotted as function of log v*r. The last two

v* v* v
straight lines laid down are parallel and the difference of the function
value is on the average 4.03, as above. The equation for universal velocity

p=c+algn

distribution on theoretical grounds (ref. 30) ought to agree with equations
(67) and (68) if the straight line ¢ =¢ (n) is plotted only through the
points near the wall, insofar as cp = b. In fact the straight line

¢ =>584+5521gn

is in good agreement with the experimental points near the wall. The value
5.52 corresponds to a value of von Karman's universal constants.

2,3025
x=pry = 0.41"7 .

b) By division of equation (67 anu {f%) T 1z ubtained as function

i
T
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of v*r but therewith also as function of the Reynolds number that is ex-

v
pressed by _v*r since
v
. Re=28r_21 ver 2828("*—’)~1__.
v e ¥ ! v/ Yz
Vi can however also be expressed by means of equation (64a) by v*r . 1In
’ v

Fig., 39 the thus obtained equstion
@ @
ﬁ=f(vﬁ

for Reynolds numbers 3-10% to 1'108 are drawn in. In addition, the
experimental values of Stanton and Panngll and our own are plotted (table 9).
In the zone of developed laminar flow —5== 0.5. The upper limit of laminar
flow is at log Re = 3.1, corresponding to a Reynolds number of Re = 12.6‘103.
It will be noted that the measured points up to Reynolds number Re = 200710
(log Re = 5.4) deviate from the calculated curve: they are connected by a
broken line curve. This deviation is to be explained by the effect of vis-
cosity.which the formula does not show. In the further course above Re =
200°10" the agreement is rather good. The measured values of Stanton and
Pannell are in good agreement with ours to log Re = 4.2. Above this limit,
there is an almost constant deviation. This deviation is certainly caused

by the method ¢f nrasurement. As mentioned on page we undertook supple-
mentary measurements at different Reynolds numbers 20d upstream of the thresh-
old cross section, which yielded the same values as our earlier measurements.
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S | , . The object of, the present stydy was,to investigate the mathematical

b y relationships of 'turbulent flows in smooth pipes in the greatest possible

- range of Reynolds numbers. For this purpose, an experimental setup was con-
structed for determinatjon of turbulent water flows in circular pipes up to
.Reynolds number 3240°10~. By evaluation of the measured velocity distrib-
utions and pressure gradients the following was established:

1. .The form of the velocity distribution changes with the Reynolds
number. With increasing Reynolds number the velocity distribution is fuller
and fuller. Comparison of the velocity distributions measured by /35
and those of Stanton with our measurements produced good agreement.

2. The exponent n of the -Prandtl law of expomentials (u = ayn, if y =
distance from the wall) has the figxed value of n = 1/7 in the Blasius
resistanan range up to Re = 100°10°. At very low Reynolds numbers, the
exponent is greater than 1/7. Above Reynolds number. Re = 100°103, with in-
creasing Reynolds number there is obserged a decrease of exponent n. At
the highest Reynolds number Re=3240-10", exponent n reaches the value of
1/10. Since characteristic magnitudes for turbulent flow in the vicinity
of the wall are made dimensionless: T, = shearing stress at the wall, v =
kinematic viscosity, ® = density, there is a valid law of velocity dis-
tribution for all Reynolds numbers in the zone near the wall

w'—?w(vi
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where [ ==¢, " i * )

For sufficiently high values of n (above n = 10)

T

§ = A+ Blogn
is sufficiently exact (A and B are universal constants).

3. The turbulent exchange magnitude was determined as a function of

wall distance. The dimensionless plotting of _g, as a function of y/r
v*r

shows that above Re 100'103 the distribution of exchange magnitudes over the
cross-section is independent of the Reynolds number. Below this Reynolds
number, this distribution is very pronouncedly dependent upon the Reynolds
number. For the Prandtl mixing length that is related to the turbulent
impulse exchange, it was found that the ratio 1/r for each point of the cross-
sectiog decreases with increasing Reynolds number. If Re exceeds the valua
100°10°, the dimensionless mixing length distribution l/r = f(y/r) i< in-
dependent of the Reynolds number. The independence indicates that the effect
of viscosity is no longer present above this Reynolds number.

4, The measured velocity distributions and the law of resistance were
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compared with von Kdrm&n's calculated distribution based on his hypofhesiédéf
51m11ar1ty and were found to be in good agreement with this distribution in
the range of highest Reynolds numbers where the effect of viscosity is

absent.

In connectlon ‘with. the von Kdrmdn Slmllarlty hypothesls new theories -
of Prandtl and Betz are reported. oo

5. 1If - :P ?% is the pipe coefficient of resistance, there
: T o i :
is confirmation of the Blasius formula for resistance ip = 0.316 up to
Re 1/4

Reynolds number 100‘103. For higher numbers there is the formula

1= 0002+ 1332;7 .

In connection with the von K4rmédn resistance formula and ours, relation-
ships between the mean velocity U and maximum velocity U were determined
which indicated new correlations of the various formulas.
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